Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Growing new breed of vaccine-producing plants to fight human diseases worldwide

26.07.2004


At his presentation at the annual meeting of the American Society of Plant Biologists (ASPB) here July 24, 2004, Arizona State University Professor Charles J. Arntzen explained the newest advances in his research on plant-producing vaccines.



The development and introduction of new vaccines to improve global public health faces many challenges, Arntzen noted. The vaccines must address the need for lower costs, oral-administration (needle-free), heat stability, and they must include combination vaccines including those that protect against diseases that occur predominantly in developing countries, he added.

Over the last decade, the team working with Arntzen has shown that a set of genes from human pathogens can be introduced into plant cells, and intact plants regenerated which "bio-manufacture" subunit vaccines consisting of the pathogen gene products. Simple feeding of the plant tissues to animals or humans results in an immune response to the subunit vaccines," Arntzen commented.


Arntzen’s research focuses now on producing vaccines in tomatoes to fight human afflictions such as cholera, Norwalk Virus and hepatitis B. Norwalk Virus is a major cause of gastrointestinal infection and diarrhea. Diarrheal diseases kill at least two million people in the world each year, most of them children, Arntzen noted.

Ongoing research is focused on development of minimal processing technology, adopted from the food industry, to yield uniform doses of heat-stable vaccine for oral delivery, Arntzen said. He provided a summary on the strategies used to ensure that plants used in vaccine manufacture will not be mixed with those used in the food chain, and on the rationale for adoption of plant-derived vaccine technology in developing countries.

Arntzen was appointed the Florence Ely Nelson Presidential Endowed Chair at Arizona State University in Tempe in 2000. He served as the Founding Director of the Arizona Biodesign Institute until May 2003. He currently serves as the Co-Director of the Center for Infectious Diseases and Vaccinology of that Institute, with Professor Roy Curtiss. Arntzen was elected to the U.S. National Academy of Sciences in 1983 and to the National Academy of Sciences in India the following year. He has served since 2001 on the President’s Council of Advisors on Science and Technology (PCAST) of President George W. Bush.

Immediately before his talk 6:30 p.m. today, Arntzen received the American Society of Plant Biologists 2004 Leadership in Science Public Service Award. The award is presented to an individual who has made outstanding contributions to science and society.

Past years recipients of the ASPB Leadership in Science Public Service Award are Alexander von Humboldt Award for Agriculture winner Dr. Dennis Gonsalves, Nobel Laureate for Peace Dr. Norman Borlaug, Dr. Ingo Potrykus, whose discoveries produced Golden Rice to combat human blindness and other afflictions, Rockefeller Foundation President Dr. Gordon Conway, and U.S. Senator Christopher Bond (R-MO).

Brian Hyps | EurekAlert!
Further information:
http://www.aspb.org

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>