Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Saving Cells - Safer Method for Filtering Sensitive Biological Products

26.07.2004


For many years, engineers have worked to efficiently filter valuable bio-process products on an industrial economic scale. The challenge has been to push rates up without incurring high shear rates and resultant cell lysis, which would cause loss of yield. High shear can destroy delicate and valuable biological materials such as proteins, blood, algae and yeasts, and also brings with it a requirement for higher flow rates, which in turn raises pumping costs.



Inventors at the University of Oxford have developed two very elegant solutions to this dilemma, each of which would allow bio-process engineers to “have their cake and eat it” – i.e. achieve high flux AND low shear. Both technologies are improvements upon the existing practice of using ceramic block or tubular membrane filters, allowing users to obtain breakthrough performance without incurring massive disruption.

The first method is an insert that could be applied to existing tubular membrane filters (TMF) as an add-on. It can be used to achieve excellent mixing at low rates of flow and with a laminar flow pattern. This combination helps to minimise cell damage in the filtration of sensitive materials as high filtration fluxes are obtained at much lower feed flow rates than are currently achieved using existing equipment. The method has been successfully used for ultrafiltration of protein solutions with high flux and negligable fouling; separation of plasma from whole blood by microfiltration and separation of high concentration yeast suspensions. All of these important processes can be achieved more effectively at a much lower cost if the insert method is adopted.


The second method or "Helical Groove" ceramic block membrane filter would be a suitable replacement for an existing ceramic block filter element. Normally the performance of these filters is limited by the efficiency of fluid mixing. The helically grooved internal structure of the new membrane allows optimisation of radial mixing as the surface area of the filter is increased. The inherent properties of the filters are also important and include excellent chemical and thermal stability and rigidity. From a practical point of view they are easy to sterilise and can be easily adapted for use in large-scale units.

The inventions are now the subject of granted patents and a ten-tube microfiltration module is available for demonstration purposes. Companies interested in developing these systems for commercial applications should contact Isis Innovation Ltd.

Kim Bruty | alfa
Further information:
http://www.isis-innovation.com

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>