Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Saving Cells - Safer Method for Filtering Sensitive Biological Products

26.07.2004


For many years, engineers have worked to efficiently filter valuable bio-process products on an industrial economic scale. The challenge has been to push rates up without incurring high shear rates and resultant cell lysis, which would cause loss of yield. High shear can destroy delicate and valuable biological materials such as proteins, blood, algae and yeasts, and also brings with it a requirement for higher flow rates, which in turn raises pumping costs.



Inventors at the University of Oxford have developed two very elegant solutions to this dilemma, each of which would allow bio-process engineers to “have their cake and eat it” – i.e. achieve high flux AND low shear. Both technologies are improvements upon the existing practice of using ceramic block or tubular membrane filters, allowing users to obtain breakthrough performance without incurring massive disruption.

The first method is an insert that could be applied to existing tubular membrane filters (TMF) as an add-on. It can be used to achieve excellent mixing at low rates of flow and with a laminar flow pattern. This combination helps to minimise cell damage in the filtration of sensitive materials as high filtration fluxes are obtained at much lower feed flow rates than are currently achieved using existing equipment. The method has been successfully used for ultrafiltration of protein solutions with high flux and negligable fouling; separation of plasma from whole blood by microfiltration and separation of high concentration yeast suspensions. All of these important processes can be achieved more effectively at a much lower cost if the insert method is adopted.


The second method or "Helical Groove" ceramic block membrane filter would be a suitable replacement for an existing ceramic block filter element. Normally the performance of these filters is limited by the efficiency of fluid mixing. The helically grooved internal structure of the new membrane allows optimisation of radial mixing as the surface area of the filter is increased. The inherent properties of the filters are also important and include excellent chemical and thermal stability and rigidity. From a practical point of view they are easy to sterilise and can be easily adapted for use in large-scale units.

The inventions are now the subject of granted patents and a ten-tube microfiltration module is available for demonstration purposes. Companies interested in developing these systems for commercial applications should contact Isis Innovation Ltd.

Kim Bruty | alfa
Further information:
http://www.isis-innovation.com

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>