Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular motor shuttles key protein in response to light

19.07.2004


In experiments with fruit flies, Johns Hopkins researchers have discovered how a key light-detecting molecule in the eye moves in response to changes in light intensity. Their finding adds to growing evidence that some creatures -- and probably people -- adapt to light not only by mechanically shrinking the pupil to physically limit how much light enters the eye, but also by a chemical response.

Building on their previous work showing that specific proteins in eye cells are redistributed in response to bright light, the Johns Hopkins team now reports how a key protein called arrestin is shuttled from a "holding area" where it binds and calms a light-detecting protein. Writing in the July 7 issue of Neuron, the team says arrestin is moved around by a tiny molecular motor, called myosin, which travels along the "train tracks" of the cell’s internal skeleton.

Arrestin’s swift relocation, the researchers proposed, helps prevent temporary blindness that would otherwise be caused by a sudden increase in light intensity, such as occurs when stepping from a dark movie theater into the bright afternoon sunshine.



"We knew that arrestin was transported, but we didn’t know how this occurred," says Craig Montell, Ph.D., professor of biological chemistry. "Fly and mammalian eyes have similar light detector cells and proteins, and it takes about the same amount of time for our eyes to adapt to light, so we suspect that comparable mechanisms exist in humans."

The light-detecting cells in fruit flies are similar to the rod and cone cells found in the human retina. One end of each cell contains the protein that directly responds to light, but other proteins critical for the light response are shifted back and forth into different parts of the cell in a light-dependent manner. Scientists didn’t know how these molecules might be moved from one end of the cell to the other, until now.

Postdoctoral fellow Seung-Jae Lee, Ph.D., had a hunch that myosin -- a molecular motor -- might play a role in transporting arrestin. Studying flies that had been engineered to lack a myosin, dubbed NINAC for "neither inactivation nor afterpotential C," Lee found that arrestin didn’t move when the fly was exposed to bright light. Instead, arrestin stayed in the protein-making part of the cell.

"For the cell to properly adapt to bright light, arrestin needs to move," says Montell. "If it doesn’t, the cell remains as sensitive to light as it was when it was dark."

While some details of arrestin’s shuttling in flies are still unclear, the researchers showed that arrestin and the motor don’t bind to each other directly. Instead, they are "glued" together by a sticky fat, called phosphoinositides.

"Arrestin is pasted onto the myosin motor and is quickly taken to its target destination within the cell," says Montell. "This explains why it moves much faster than if it just moved passively, essentially wandering to the other side of the cell."

The researchers will now study mice to see if there are similar chemical controls of light adaptation. They will also start examining other proteins that move in response to light in both flies and mice.

The research was supported by the National Eye Institute. Authors on the paper are Lee and Montell. Lee is now a postdoctoral fellow in the Department of Biochemistry and Biophysics at the University of California, San Francisco.

Joanna Downer | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.neuron.org

More articles from Life Sciences:

nachricht Maelstroms in the heart
22.02.2018 | Max-Planck-Institut für Dynamik und Selbstorganisation

nachricht Decoding the structure of the huntingtin protein
22.02.2018 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

The RWI/ISL-Container Throughput Index started off well in 2018

22.02.2018 | Business and Finance

FAU researchers demonstrate that an oxygen sensor in the body reduces inflammation

22.02.2018 | Health and Medicine

Histology in 3D: new staining method enables Nano-CT imaging of tissue samples

22.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>