Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making Blind Zebrafish See

01.07.2004


Scientists in the Conway Institute of Biomolecular & Biomedical Research have restored the sight of blind zebrafish whose eyes failed to develop due to a genetic mutation. The findings, published this week in Developmental Biology, are exciting first steps on a long road to understanding eye diseases in humans.



Dr. Breandan Kennedy and his colleagues at the University of Washington, Seattle and the Hubrecht Laboratory in Utrecht, Netherlands first identified a family of eyeless fish. They then discovered the gene that controls initial development of eye tissue (retinal homeobox 3 or rx3) and that mutations in this gene resulted in the eyeless fish.

When Dr. Kennedy and his research team introduced a normal copy of the rx3 gene into fish embryos that had inherited the mutated version of the gene, they discovered that this treatment restored normal eye development. Recent studies from researchers in the Unites States have shown that mutations in the human form of this gene cause anophthalmia, a disease in which eyes also fail to form.


Commenting on the findings, Dr. Kennedy said, “the sequencing of the human genome has given us the blueprint of life. However, we now need to determine the role of each of the ~30,000 genes in the genome, and their links to disease. Zebrafish provide an excellent system for this goal, as they are particularly suited to genetic studies and because many genes perform the same task in zebrafish and humans.”

This is the first publication from the largest Irish facility for the study of zebrafish, which was established last year after the opening of the Conway Institute in University College Dublin. These tiny, freshwater fish have many genetic traits that are similar to humans due to the fact that they also possess a backbone. This makes them ideal models for the study of inherited human diseases.

Elaine Quinn | alfa
Further information:
http://www.ucd.ie
http://dx.doi.org/10.1016/j.ydbio.2004.02.026

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>