Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology shows axons are extremely sensitive to directional cues

24.05.2004


Researchers at Georgetown University have developed a novel technology to precisely measure the sensitivity of nerve fibers that wire up the brain during development. Through use of this technology, they discovered that these fibers, or axons, possess an incredible sensitivity to molecular guidance cues that direct the axon’s route to its desired destination in the brain. Their findings are described in the June issue of Nature Neuroscience.

Similar to connecting your PC, monitor, mouse and printer correctly to make all computer parts work, the developing brain needs a series of critical wiring connections to be made for it to function properly. But, unlike computers that come with a user and troubleshooting manual, nerve fibers called axons must follow molecular cues to find the right targets.

Much work has been done to understand what molecules are involved in this process, called axonal guidance. However, no technology until now allowed researchers to create a controllable, stable gradient with which one could measure the sensitivity of axons to gradients, and how that sensitivity can impact and guide the development of connections in the brain.



"I was curious about the physics of this wiring up process, which led our lab in a different direction than others who study axonal guidance," said Geoff Goodhill, PhD associate professor of neuroscience at Georgetown University Medical Center. "Once we had created a stable environment and could control molecular gradients, we were amazed to discover just how sensitive axons are to tiny changes in the concentration of molecular cues. We’ve found that a difference in concentration of a single molecule across the tip of an axon can measurably impact the direction in which the axons grow."

Goodhill notes this physics-based approach to understanding gradients affect axons may eventually assist researchers who study how the nervous system regenerates after injury. "Clearly, the more we understand about what guides connectivity normally, the greater chance there is of figuring out how connections can be regrown after they’ve been lost."

The technology may also have applications outside the realm of neuroscience. "In cancer, and other biological fields where cell migration in important, we think our new technology may be useful for studying movement in response to gradients," said Goodhill.

The team has plans to conduct further research on molecular gradients and axonal guidance by using time lapse imaging, and studying if axons are as sensitive to repulsive molecular cues that push axons away from particular regions.

Goodhill conducted this research with Georgetown collaborators Will Rosoff, PhD in Neuroscience, Jeffery Urbach, PhD, Mark Esrick, PhD and Ryan McAllister, PhD in Physics, and Linda J. Richards, PhD, of the University of Maryland. Their research was supported by the National Institutes of Health, National Science Foundation, and Whitaker Foundation.


Georgetown University Medical Center is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through our partnership with MedStar Health). Our mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis--or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing and Health Studies, both nationally ranked, and the world renowned Lombardi Comprehensive Cancer Center.

Lindsey Spindle | EurekAlert!
Further information:
http://www.georgetown.edu/gumc

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>