Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology shows axons are extremely sensitive to directional cues

24.05.2004


Researchers at Georgetown University have developed a novel technology to precisely measure the sensitivity of nerve fibers that wire up the brain during development. Through use of this technology, they discovered that these fibers, or axons, possess an incredible sensitivity to molecular guidance cues that direct the axon’s route to its desired destination in the brain. Their findings are described in the June issue of Nature Neuroscience.

Similar to connecting your PC, monitor, mouse and printer correctly to make all computer parts work, the developing brain needs a series of critical wiring connections to be made for it to function properly. But, unlike computers that come with a user and troubleshooting manual, nerve fibers called axons must follow molecular cues to find the right targets.

Much work has been done to understand what molecules are involved in this process, called axonal guidance. However, no technology until now allowed researchers to create a controllable, stable gradient with which one could measure the sensitivity of axons to gradients, and how that sensitivity can impact and guide the development of connections in the brain.



"I was curious about the physics of this wiring up process, which led our lab in a different direction than others who study axonal guidance," said Geoff Goodhill, PhD associate professor of neuroscience at Georgetown University Medical Center. "Once we had created a stable environment and could control molecular gradients, we were amazed to discover just how sensitive axons are to tiny changes in the concentration of molecular cues. We’ve found that a difference in concentration of a single molecule across the tip of an axon can measurably impact the direction in which the axons grow."

Goodhill notes this physics-based approach to understanding gradients affect axons may eventually assist researchers who study how the nervous system regenerates after injury. "Clearly, the more we understand about what guides connectivity normally, the greater chance there is of figuring out how connections can be regrown after they’ve been lost."

The technology may also have applications outside the realm of neuroscience. "In cancer, and other biological fields where cell migration in important, we think our new technology may be useful for studying movement in response to gradients," said Goodhill.

The team has plans to conduct further research on molecular gradients and axonal guidance by using time lapse imaging, and studying if axons are as sensitive to repulsive molecular cues that push axons away from particular regions.

Goodhill conducted this research with Georgetown collaborators Will Rosoff, PhD in Neuroscience, Jeffery Urbach, PhD, Mark Esrick, PhD and Ryan McAllister, PhD in Physics, and Linda J. Richards, PhD, of the University of Maryland. Their research was supported by the National Institutes of Health, National Science Foundation, and Whitaker Foundation.


Georgetown University Medical Center is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through our partnership with MedStar Health). Our mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis--or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing and Health Studies, both nationally ranked, and the world renowned Lombardi Comprehensive Cancer Center.

Lindsey Spindle | EurekAlert!
Further information:
http://www.georgetown.edu/gumc

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>