Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New technology shows axons are extremely sensitive to directional cues


Researchers at Georgetown University have developed a novel technology to precisely measure the sensitivity of nerve fibers that wire up the brain during development. Through use of this technology, they discovered that these fibers, or axons, possess an incredible sensitivity to molecular guidance cues that direct the axon’s route to its desired destination in the brain. Their findings are described in the June issue of Nature Neuroscience.

Similar to connecting your PC, monitor, mouse and printer correctly to make all computer parts work, the developing brain needs a series of critical wiring connections to be made for it to function properly. But, unlike computers that come with a user and troubleshooting manual, nerve fibers called axons must follow molecular cues to find the right targets.

Much work has been done to understand what molecules are involved in this process, called axonal guidance. However, no technology until now allowed researchers to create a controllable, stable gradient with which one could measure the sensitivity of axons to gradients, and how that sensitivity can impact and guide the development of connections in the brain.

"I was curious about the physics of this wiring up process, which led our lab in a different direction than others who study axonal guidance," said Geoff Goodhill, PhD associate professor of neuroscience at Georgetown University Medical Center. "Once we had created a stable environment and could control molecular gradients, we were amazed to discover just how sensitive axons are to tiny changes in the concentration of molecular cues. We’ve found that a difference in concentration of a single molecule across the tip of an axon can measurably impact the direction in which the axons grow."

Goodhill notes this physics-based approach to understanding gradients affect axons may eventually assist researchers who study how the nervous system regenerates after injury. "Clearly, the more we understand about what guides connectivity normally, the greater chance there is of figuring out how connections can be regrown after they’ve been lost."

The technology may also have applications outside the realm of neuroscience. "In cancer, and other biological fields where cell migration in important, we think our new technology may be useful for studying movement in response to gradients," said Goodhill.

The team has plans to conduct further research on molecular gradients and axonal guidance by using time lapse imaging, and studying if axons are as sensitive to repulsive molecular cues that push axons away from particular regions.

Goodhill conducted this research with Georgetown collaborators Will Rosoff, PhD in Neuroscience, Jeffery Urbach, PhD, Mark Esrick, PhD and Ryan McAllister, PhD in Physics, and Linda J. Richards, PhD, of the University of Maryland. Their research was supported by the National Institutes of Health, National Science Foundation, and Whitaker Foundation.

Georgetown University Medical Center is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through our partnership with MedStar Health). Our mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis--or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing and Health Studies, both nationally ranked, and the world renowned Lombardi Comprehensive Cancer Center.

Lindsey Spindle | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>