Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists show hippocampus’s role in long term memory

13.05.2004


NYU neuroscientists provide direct evidence that the hippocampus is involved in the representation and retrieval of long-term memories



The formation of new memories and the retrieval of older memories are both evidenced in the hippocampus region of the brain, according to recent research by NYU neuroscientists.

The role of the hippocampus in the formation of new memories has been well-documented, but the contribution of this structure to the representation and retrieval of long-term memories is less clear. In research published in the May 13 issue of Neuron, a team of scientists led by NYU Professor of Neural Science Wendy Suzuki recorded the activity of individual hippocampal neurons as animals retrieved well-learned information from memory.


Monkeys were first shown a complex image superimposed with four identical targets. Choice of one of the four targets would give them a reward for a particular image. Animals performed trials with very well-learned stimuli as well as with novel stimuli in which they learned the scene-target associations by trial and error. Suzuki’s team found that the response of the hippocampal neurons differentiated between the well-learned stimuli significantly better than the novel stimuli. This differentiated response in the hippocampus provides strong evidence for a memory signal specific for the well-learned information.

"We know that the hippocampus is involved in transferring immediate or short-term memories into long-term memories, but its specific contribution to the representation of very well-learned information was not well-understood." said Suzuki. "These findings are exciting because they suggest that the hippocampus is involved in signaling even very well-learned information. This may be a way that well-learned information is incorporated into our memories of everyday episodes or events."

By demystifying the role of the hippocampus in both the acquisition and retrieval of everyday memories, this research forms the necessary first steps towards understanding and developing treatments for devastating memory-related diseases such as Alzheimer’s Disease.

Suzuki’s team that included NYU graduate student Marianna Yanike (lead author) and NYU post-doctoral fellow Sylvia Wirth.

Shonna Keogan | EurekAlert!
Further information:
http://www.nyu.edu/

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>