Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wisconsin chemists find a new chink in TB’s armor

10.05.2004


The family of bacteria that causes tuberculosis (TB) and leprosy are notoriously sturdy. And although the diseases they cause have been held in check for the past 50 years by antibiotics, some strains are becoming increasingly resistant to existing therapy.



Now, however, a new chink has been found in the cellular armor that makes these infectious diseases difficult to treat. The discovery, reported today (May 9) in the online editions of the journal Nature Structural & Molecular Biology by a team of chemists and biochemists from the University of Wisconsin-Madison, opens the door to the development of a new family of antibiotics to treat diseases that still claim as many as 3 million lives annually worldwide.

"Most of the treatments we have for these diseases date from the 1950s," says Laura L. Kiessling, a UW-Madison professor of chemistry and the leader of the team reporting the new discovery. "Many traditional antibiotics don’t work against tuberculosis."


The bacteria that cause tuberculosis are literally tough as nails. With unique multilayered cell walls, the microbes resist easy treatment.

Current drug regimens typically last up to six months and require a mix of as many as six different drugs. Because the drugs cause unpleasant side effects, and because patients often feel better after a month or two, many people do not complete treatments, a phenomenon contributing to a worldwide epidemic of multidrug-resistant TB. Adding to the problem, in less developed countries where TB is most common, health care is spotty and drug supplies are frequently inadequate.

Kiessling and her colleagues, working with the support of the National Science Foundation, have detailed the workings of a key enzyme that the bacterium requires to maintain the integrity of its cell walls. Enzymes are proteins that initiate chemical reactions within plant and animal cells.

"We’ve figured out how this enzyme works. If you knock it out, the bacteria aren’t viable," Kiessling explains. "It’s an essential enzyme."

The TB microbe’s success and resistance to traditional drugs is attributed in large measure to its multilayered cell wall, composed of chicken wire-shaped molecules wrapped around an inner membrane. Atop that structure, are three more layers that further insulate the microbe from attack by traditional antibiotics.

The enzyme is required for the TB bacterium to build its cell wall. The enzyme, in turn, depends on a derivative of vitamin B2 to make a cell wall building block. The work published today by Kiessling’s group shows that the enzyme uses the vitamin in a new way, which also gives it a new biological role.

Detailing the interplay between vitamin B2 and the enzyme provides a blueprint for inhibitors of the enzymes that keep the bacterium’s cell walls intact. As a result, Kiessling’s group has effectively identified a target for drug manufactures interested in developing new antibiotics to combat TB and other diseases such as leprosy, which are caused by similar types of bacteria.

"Because we understand the mechanism better, we can design inhibitors of this enzyme," Kiessling says.

However, she notes that under the best circumstances, it takes years and many millions of dollars for new drugs to be developed. What’s more, she says, many major drug manufacturers are not actively pursuing the development of new antibiotics, despite growing resistance by microbes to antibiotics currently in use.

Tuberculosis, once commonly referred to as consumption, has a long history. Evidence of tubercular decay has been found in the bones of Egyptian mummies. It was identified by Hippocrates, the ancient Greek physician, as the most widespread and fatal disease of the ancient world. It has claimed many notable victims throughout history, including the poet John Keats, composer Frederick Chopin, playwright Anton Chekhov and writers Robert Louis Stevenson, Emily Bronte, D.H. Lawrence and George Orwell.

In addition to Kiessling, the authors of the Nature Structural & Molecular Biology paper include Michelle Soltero-Higgen and Todd D. Gruber of the UW-Madison Department of Biochemistry and Erin E. Carlson of the UW-Madison Department of Chemistry.


Terry Devitt (608) 262-8282, trdevitt@wisc.edu

Laura L. Kiessling | EurekAlert!
Further information:
http://www.wisc.edu/

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>