Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wisconsin chemists find a new chink in TB’s armor

10.05.2004


The family of bacteria that causes tuberculosis (TB) and leprosy are notoriously sturdy. And although the diseases they cause have been held in check for the past 50 years by antibiotics, some strains are becoming increasingly resistant to existing therapy.



Now, however, a new chink has been found in the cellular armor that makes these infectious diseases difficult to treat. The discovery, reported today (May 9) in the online editions of the journal Nature Structural & Molecular Biology by a team of chemists and biochemists from the University of Wisconsin-Madison, opens the door to the development of a new family of antibiotics to treat diseases that still claim as many as 3 million lives annually worldwide.

"Most of the treatments we have for these diseases date from the 1950s," says Laura L. Kiessling, a UW-Madison professor of chemistry and the leader of the team reporting the new discovery. "Many traditional antibiotics don’t work against tuberculosis."


The bacteria that cause tuberculosis are literally tough as nails. With unique multilayered cell walls, the microbes resist easy treatment.

Current drug regimens typically last up to six months and require a mix of as many as six different drugs. Because the drugs cause unpleasant side effects, and because patients often feel better after a month or two, many people do not complete treatments, a phenomenon contributing to a worldwide epidemic of multidrug-resistant TB. Adding to the problem, in less developed countries where TB is most common, health care is spotty and drug supplies are frequently inadequate.

Kiessling and her colleagues, working with the support of the National Science Foundation, have detailed the workings of a key enzyme that the bacterium requires to maintain the integrity of its cell walls. Enzymes are proteins that initiate chemical reactions within plant and animal cells.

"We’ve figured out how this enzyme works. If you knock it out, the bacteria aren’t viable," Kiessling explains. "It’s an essential enzyme."

The TB microbe’s success and resistance to traditional drugs is attributed in large measure to its multilayered cell wall, composed of chicken wire-shaped molecules wrapped around an inner membrane. Atop that structure, are three more layers that further insulate the microbe from attack by traditional antibiotics.

The enzyme is required for the TB bacterium to build its cell wall. The enzyme, in turn, depends on a derivative of vitamin B2 to make a cell wall building block. The work published today by Kiessling’s group shows that the enzyme uses the vitamin in a new way, which also gives it a new biological role.

Detailing the interplay between vitamin B2 and the enzyme provides a blueprint for inhibitors of the enzymes that keep the bacterium’s cell walls intact. As a result, Kiessling’s group has effectively identified a target for drug manufactures interested in developing new antibiotics to combat TB and other diseases such as leprosy, which are caused by similar types of bacteria.

"Because we understand the mechanism better, we can design inhibitors of this enzyme," Kiessling says.

However, she notes that under the best circumstances, it takes years and many millions of dollars for new drugs to be developed. What’s more, she says, many major drug manufacturers are not actively pursuing the development of new antibiotics, despite growing resistance by microbes to antibiotics currently in use.

Tuberculosis, once commonly referred to as consumption, has a long history. Evidence of tubercular decay has been found in the bones of Egyptian mummies. It was identified by Hippocrates, the ancient Greek physician, as the most widespread and fatal disease of the ancient world. It has claimed many notable victims throughout history, including the poet John Keats, composer Frederick Chopin, playwright Anton Chekhov and writers Robert Louis Stevenson, Emily Bronte, D.H. Lawrence and George Orwell.

In addition to Kiessling, the authors of the Nature Structural & Molecular Biology paper include Michelle Soltero-Higgen and Todd D. Gruber of the UW-Madison Department of Biochemistry and Erin E. Carlson of the UW-Madison Department of Chemistry.


Terry Devitt (608) 262-8282, trdevitt@wisc.edu

Laura L. Kiessling | EurekAlert!
Further information:
http://www.wisc.edu/

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>