Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rat kidneys and toad brains communicate in almost the same manner

07.05.2004


Dutch researcher Niels Cornelisse used computer models to study the electrochemical communication between cells from rat kidneys and cells from the pituitary gland of a toad species. He found many similarities in the coupling of chemical and electrical signals in these completely different cells.



Cells transmit electrical and chemical signals to other cells to coordinate the various cellular activities in the organism. Cornelisse made a mathematical model for the link between the chemical calcium signal and the electrical activity of brain cells. With this model he discovered many similarities between the linking of the electrical and chemical signals in a completely different cell type, the tissue cell, even though the cells studied had completely different functions.

Fundamental knowledge about the manner in which cells communicate with each other, could provide insights into diseases, such as cancer or brain disorders, where something goes wrong with the signal transfer between cells.


The brain cell originated from the pituitary gland of the African clawed frog (Xenopus laevis). This cell issues a hormone which regulates the colouration of the skin. This allows the toad to adjust its skin colour to the light intensity of its surroundings. The other cell type, the tissue cell, originated from the supportive tissue of rat kidneys.

Under certain experimental conditions, both cell types exhibit spontaneous electrical activity as well as associated spontaneous variations in the concentration of calcium ions in the cell. Calcium ions ensure the transfer of information within a cell and are, for example, involved in the emission of chemical signals, cell division and muscular contraction.

As well as the many similarities, the researcher also found an important difference in communication between the two cell types. In the toad cell, the link between the chemical calcium signal and the electrical signal was particularly important for initiating the spontaneous cell activity. However, in the rat cell, the link between the two signals mainly ensured the transmission of the calcium signal through a network of cells.

The research was funded by the Netherlands Organisation for Scientific Research.

Sonja Jacobs | NWO
Further information:
http://www.nwo.nl/nwohome.nsf/pages/NWOP_5XZDBJ_Eng

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>