Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rat kidneys and toad brains communicate in almost the same manner

07.05.2004


Dutch researcher Niels Cornelisse used computer models to study the electrochemical communication between cells from rat kidneys and cells from the pituitary gland of a toad species. He found many similarities in the coupling of chemical and electrical signals in these completely different cells.



Cells transmit electrical and chemical signals to other cells to coordinate the various cellular activities in the organism. Cornelisse made a mathematical model for the link between the chemical calcium signal and the electrical activity of brain cells. With this model he discovered many similarities between the linking of the electrical and chemical signals in a completely different cell type, the tissue cell, even though the cells studied had completely different functions.

Fundamental knowledge about the manner in which cells communicate with each other, could provide insights into diseases, such as cancer or brain disorders, where something goes wrong with the signal transfer between cells.


The brain cell originated from the pituitary gland of the African clawed frog (Xenopus laevis). This cell issues a hormone which regulates the colouration of the skin. This allows the toad to adjust its skin colour to the light intensity of its surroundings. The other cell type, the tissue cell, originated from the supportive tissue of rat kidneys.

Under certain experimental conditions, both cell types exhibit spontaneous electrical activity as well as associated spontaneous variations in the concentration of calcium ions in the cell. Calcium ions ensure the transfer of information within a cell and are, for example, involved in the emission of chemical signals, cell division and muscular contraction.

As well as the many similarities, the researcher also found an important difference in communication between the two cell types. In the toad cell, the link between the chemical calcium signal and the electrical signal was particularly important for initiating the spontaneous cell activity. However, in the rat cell, the link between the two signals mainly ensured the transmission of the calcium signal through a network of cells.

The research was funded by the Netherlands Organisation for Scientific Research.

Sonja Jacobs | NWO
Further information:
http://www.nwo.nl/nwohome.nsf/pages/NWOP_5XZDBJ_Eng

More articles from Life Sciences:

nachricht Scientists decipher key principle behind reaction of metalloenzymes
15.01.2018 | Rheinisch-Westfälische Technische Hochschule Aachen

nachricht New method to map miniature brain circuits
15.01.2018 | The Francis Crick Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

Im Focus: Autoimmune Reaction Successfully Halted in Early Stage Islet Autoimmunity

Scientists at Helmholtz Zentrum München have discovered a mechanism that amplifies the autoimmune reaction in an early stage of pancreatic islet autoimmunity prior to the progression to clinical type 1 diabetes. If the researchers blocked the corresponding molecules, the immune system was significantly less active. The study was conducted under the auspices of the German Center for Diabetes Research (DZD) and was published in the journal ‘Science Translational Medicine’.

Type 1 diabetes is the most common metabolic disease in childhood and adolescence. In this disease, the body's own immune system attacks and destroys the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fachtagung analytica conference 2018

15.01.2018 | Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

 
Latest News

Black hole spin cranks-up radio volume

15.01.2018 | Physics and Astronomy

A matter of mobility: multidisciplinary paper suggests new strategy for drug discovery

15.01.2018 | Life Sciences

New method to map miniature brain circuits

15.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>