Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial prions created

23.03.2004


Yeast strains harboring distinct natural and artificial prions, all using an ade1-14 nonsense suppression reporter to indicate the presence (pink) or absence (red) of the prion.
Clockwise from top: [PSI+], [psi-], [F+], [f-], [NU+]mini, [nu-]mini, [Q+], [q-]


The culprit behind mad cow disease, a.k.a. bovine spongiform encephalopathy, is the most infamous mammalian form of prions. Prions are misfolded proteins that are capable of growing, replicating, and being passed on to daughter cells - that is, they are by themselves heritable. Beyond their disease manifestation, prions also occur naturally in some organisms (such as yeast) and may play important roles in their growth and development. Now, Osherovich and colleagues have identified the amino acid sequences that allow prions to aggregate and replicate - and thereby pass through generations of cells - and prove this by designing an artificial yeast prion that does not exist in nature.

Prion-forming proteins normally exist as normal cellular components. But they possess the innate ability to alter their three-dimensional structure, which changes their function and makes them almost impossible to destroy. Prions grow by inducing normal proteins to alter their shape and adhere to an initial aggregate "seed." These growing masses are then thought to divide with the help of "chaperones," cellular proteins that aid in protein folding and transport, resulting in smaller prion particles called propagons. The propagons are then distributed to both mother and daughter cells during division, thereby infecting the next generation of cells.

Lev Osherovich and colleagues confirmed what others have seen, namely that an area rich in glutamine and asparagine was responsible for the aggregation and growth of prions-acting like a patch of Velcro that locks the misshapen proteins together. They went on to find that a short stretch of peptide repeats was required for the inheritance of prions - the proper division of prion masses and subsequent distribution of propagons during cell division. The authors suggest that oligopeptide repeats function as a secure binding location for chaperone proteins, which are necessary for heritability, and thus infectiousness, of prions. These results help explain why stable inheritance of prions is rare; while many proteins have stretches of amino acids similar to the aggregation sequence, few also contain sequences that permit inheritance. Osherovich and colleagues were able to create an artificial prion by fusing the oligopeptide repeats to an expanded polyglutamine tract.



By creating artificial hybrid prions, Osherovich and colleagues showed that the two discrete elements of prion-forming domains are portable and work together regardless of their origins. The authors suggest that other artificial prions could be used as a model system to study different types of aggregation sequences, such as those found in the human prion protein responsible for Creutzfeldt-Jakob’s disease or the misshapen plaques of proteins that contribute to Alzheimer’s disease.


Citation: Osherovich LZ, Cox BS, Tuite MF, Weissman JS (2004) Dissection and design of yeast prions. PLoS Biol: e86 DOI: 10.1371/journal.pbio.0020086


CONTACT:
Lev Z. Osherovich
University of California, San Francisco
Cellular and Molecular Pharmacology
S476 Genentech Hall
600 16th St.
San Francisco, CA 94143
United States of America
415-502-7341
415-514-4140 (fax)
lxoshe@itsa.ucsf.edu

This article is presented as a pre-issue publication. It will be part of our April 2004 issue

Philip Bernstein | EurekAlert!
Further information:
http://www.plosbiology.org/plosonline/?request=get-document&doi=10.1371/journal.pbio.0020086

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>