Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MGH research team grows long-lasting blood vessels

11.03.2004


Advance could solve major challenge in tissue engineering



Researchers from Massachusetts General Hospital (MGH) have successfully induced the growth of new networks of functional blood vessels in mice. In the March 11 issue of Nature, the team from the Steele Laboratory in the MGH Department of Radiation Therapy describes how their technique led to the growth of long-lasting blood vessels without the need for genetic manipulation. The accomplishment may help solve one of the primary challenges in tissue engineering: providing a blood supply for newly grown organs.
"The biggest challenge has been making blood vessels that will last," says Rakesh Jain, PhD, director of the Steele Laboratory and senior author of the Nature report. "Most artificially grown vessels die quickly, but these have survived successfully for a year – which is about half a lifetime for mice." He and his colleagues also note that the introduction of genes to induce vessel growth and survival could increase the risk of cancer.

The research team began with two types of blood-vessel-related human cells – endothelial cells that form the lining of blood vessels, taken from the veins of umbilical cords, and precursors to the perivascular cells that form the supporting outer layer of blood vessels. These cells were placed into a collagen gel and grown in culture for about a day. Then the gels were implanted into cranial windows, transparent compartments placed on the brains of mice. Similar gels containing only endothelial cells were also prepared and implanted.



Within a few days both types of implants began to form long, branched tubes. Tubes in the endothelial/perivascular cell implants soon connected to the mice’s own vessels and began to carry blood. They grew rapidly for about two weeks, and then reached a point of stability. However, implants containing only endothelial cells showed little or no connection to the mouse vasculature, and within two months the new vessels in those implants almost completely disappeared.

"The combined implants formed beautiful networks that survived and grew," Jain says. "As they matured, they appeared and functioned very much like normal vasculature tissue." Jain is Cook Professor of Tumor Biology at Harvard Medical School.

The researchers believe their technique could eventually allow the growth of new blood vessels from a potential recipient’s own cells and could also be a model system for future studies of vessel growth and maturation.


The study’s co-authors are Naoto Koike, MD, PhD; Dai Fukumura, MD, PhD; Oliver Gralla, MD, and Patrick Au, all of the Steele Laboratory; and Jeffrey Schechner, MD, of Yale School of Medicine. The research was partially supported by the National Cancer Institute.

Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $400 million and major research centers in AIDS, cardiovascular research, cancer, cutaneous biology, medical imaging, neurodegenerative disorders, transplantation biology and photomedicine. In 1994, MGH and Brigham and Women’s Hospital joined to form Partners HealthCare System, an integrated health care delivery system comprising the two academic medical centers, specialty and community hospitals, a network of physician groups, and nonacute and home health services.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>