Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MGH research team grows long-lasting blood vessels

11.03.2004


Advance could solve major challenge in tissue engineering



Researchers from Massachusetts General Hospital (MGH) have successfully induced the growth of new networks of functional blood vessels in mice. In the March 11 issue of Nature, the team from the Steele Laboratory in the MGH Department of Radiation Therapy describes how their technique led to the growth of long-lasting blood vessels without the need for genetic manipulation. The accomplishment may help solve one of the primary challenges in tissue engineering: providing a blood supply for newly grown organs.
"The biggest challenge has been making blood vessels that will last," says Rakesh Jain, PhD, director of the Steele Laboratory and senior author of the Nature report. "Most artificially grown vessels die quickly, but these have survived successfully for a year – which is about half a lifetime for mice." He and his colleagues also note that the introduction of genes to induce vessel growth and survival could increase the risk of cancer.

The research team began with two types of blood-vessel-related human cells – endothelial cells that form the lining of blood vessels, taken from the veins of umbilical cords, and precursors to the perivascular cells that form the supporting outer layer of blood vessels. These cells were placed into a collagen gel and grown in culture for about a day. Then the gels were implanted into cranial windows, transparent compartments placed on the brains of mice. Similar gels containing only endothelial cells were also prepared and implanted.



Within a few days both types of implants began to form long, branched tubes. Tubes in the endothelial/perivascular cell implants soon connected to the mice’s own vessels and began to carry blood. They grew rapidly for about two weeks, and then reached a point of stability. However, implants containing only endothelial cells showed little or no connection to the mouse vasculature, and within two months the new vessels in those implants almost completely disappeared.

"The combined implants formed beautiful networks that survived and grew," Jain says. "As they matured, they appeared and functioned very much like normal vasculature tissue." Jain is Cook Professor of Tumor Biology at Harvard Medical School.

The researchers believe their technique could eventually allow the growth of new blood vessels from a potential recipient’s own cells and could also be a model system for future studies of vessel growth and maturation.


The study’s co-authors are Naoto Koike, MD, PhD; Dai Fukumura, MD, PhD; Oliver Gralla, MD, and Patrick Au, all of the Steele Laboratory; and Jeffrey Schechner, MD, of Yale School of Medicine. The research was partially supported by the National Cancer Institute.

Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $400 million and major research centers in AIDS, cardiovascular research, cancer, cutaneous biology, medical imaging, neurodegenerative disorders, transplantation biology and photomedicine. In 1994, MGH and Brigham and Women’s Hospital joined to form Partners HealthCare System, an integrated health care delivery system comprising the two academic medical centers, specialty and community hospitals, a network of physician groups, and nonacute and home health services.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>