Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crucial brain development gene identified

10.03.2004


Scientists have identified a gene in mice that is necessary for normal brain development and may contribute to the most common form of primary brain tumors in children.



Dr. Valeri Vasioukhin and colleagues at the Fred Hutchinson Cancer Research Center have discovered that a gene known as "lethal giant larvae 1" (a.k.a. Lgl1) plays a critical role in shaping cell behavior during embryonic brain development. Lgl1 was initially identified in the fruit fly Drosophila, where it regulates cell polarity (the overall directionality of a cell) as well as cell proliferation. Dr. Vasioukhin and colleagues now show a similarly important role for Lgl1 in the mammalian brain.

To gain insight into Lgl1 function in mammals, Dr. Vasioukhin and colleagues generated mice specifically lacking the Lgl1 gene. These Lgl1-knockout mice – as they are known – developed normally at first, but by day 12.5 of gestation exhibited dramatic abnormalities. Lgl1-mutant pups have a dome-shaped head, severe hydrocephaly and die within 24 hours after birth. Internally, there is an expansion of the striatum region of the brain, along with the formation of abnormal cell groupings called rosettes.


Interestingly, the rosette structures seen in Lgl1-mutant brains resemble those seen in human patients with medulloblastoma (a type of brain tumor that arises in the rear part of the brain) and other forms of primitive neuroectodermal tumors.

Dr. Vasioukhin and colleagues determined that Lgl1 deficiency leads to a loss of apical/basal polarity in neural progenitor cells, failure of these cells to differentiate into more specialized cell types, and an overall increase in proliferation by the neural progenitor cell population. The researchers believe that it is this increased number of proliferating cells that gives rise to the rosette cell masses.

The histological similarities between Lgl1-knockout mice and human brain cancer patients are particularly intriguing when considered alongside what little is known about the human version of the Lgl1 gene: Human Lgl1 resides on the short arm of chromosome 17, in a region that is affected in half of all medulloblastoma brain tumors.

While further research is needed to delineate the role of Lgl1 in human brain cancer, Dr. Vasioukhin feels confident that "the morphologic and biochemical similarities between Lgl-/- and human primitive neuroectodermal tumors provide solid grounds for considering mammalian Lgl1 a candidate mammalian tumor-suppressor gene."

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>