Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crucial brain development gene identified

10.03.2004


Scientists have identified a gene in mice that is necessary for normal brain development and may contribute to the most common form of primary brain tumors in children.



Dr. Valeri Vasioukhin and colleagues at the Fred Hutchinson Cancer Research Center have discovered that a gene known as "lethal giant larvae 1" (a.k.a. Lgl1) plays a critical role in shaping cell behavior during embryonic brain development. Lgl1 was initially identified in the fruit fly Drosophila, where it regulates cell polarity (the overall directionality of a cell) as well as cell proliferation. Dr. Vasioukhin and colleagues now show a similarly important role for Lgl1 in the mammalian brain.

To gain insight into Lgl1 function in mammals, Dr. Vasioukhin and colleagues generated mice specifically lacking the Lgl1 gene. These Lgl1-knockout mice – as they are known – developed normally at first, but by day 12.5 of gestation exhibited dramatic abnormalities. Lgl1-mutant pups have a dome-shaped head, severe hydrocephaly and die within 24 hours after birth. Internally, there is an expansion of the striatum region of the brain, along with the formation of abnormal cell groupings called rosettes.


Interestingly, the rosette structures seen in Lgl1-mutant brains resemble those seen in human patients with medulloblastoma (a type of brain tumor that arises in the rear part of the brain) and other forms of primitive neuroectodermal tumors.

Dr. Vasioukhin and colleagues determined that Lgl1 deficiency leads to a loss of apical/basal polarity in neural progenitor cells, failure of these cells to differentiate into more specialized cell types, and an overall increase in proliferation by the neural progenitor cell population. The researchers believe that it is this increased number of proliferating cells that gives rise to the rosette cell masses.

The histological similarities between Lgl1-knockout mice and human brain cancer patients are particularly intriguing when considered alongside what little is known about the human version of the Lgl1 gene: Human Lgl1 resides on the short arm of chromosome 17, in a region that is affected in half of all medulloblastoma brain tumors.

While further research is needed to delineate the role of Lgl1 in human brain cancer, Dr. Vasioukhin feels confident that "the morphologic and biochemical similarities between Lgl-/- and human primitive neuroectodermal tumors provide solid grounds for considering mammalian Lgl1 a candidate mammalian tumor-suppressor gene."

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Life Sciences:

nachricht Cleaning up? Not without helpers
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht How Obesity Promotes Breast Cancer
20.10.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>