Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ornamental palms vulnerable to disease

04.03.2004


Considered the princes of the plant world, palms are unlike many plant families in the fact that they provide both food and shelter to people, while at the same time are admired and collected for aesthetic reasons. But according to plant pathologists with The American Phytopathological Society (APS), the same genetic structure that gives the palm so many wonderful attributes is the same structure that makes them susceptible to lethal and destructive diseases.



According to Monica Elliott, plant pathology professor at the University of Florida’s Fort Lauderdale Research and Education Center, the palm’s anatomy is more similar to that of a corn plant than that of an oak tree, with each stem having a single bud or heart. Once that tissue is damaged, death is likely. "Palms cannot repair injuries to their stems, and diligent effort must be made to prevent injuries that create opportunities for insect or pathogen invasion of the trunk," she said.

Ganoderma butt rot and Phytophthora bud rot are just two of the most problematic diseases of palms. Ganoderma butt rot, caused by the fungus Ganoderma zonatum, is prevalent in Florida, where it has been found on more than 50 palm species. "Ganoderma butt rot is always a lethal disease of palms," said Elliott. "By the time symptoms develop, usually more than half of the lower trunk has been killed by the fungus," she said. In Florida, palm trees of 58 species have died from this fungus and no effective controls are known for this disease.


Phytophthora bud rot can be caused by several species of Phytophthora, and occurs in most places where palms are grown. This pathogen has been reported on palms from more than 20 countries as well as from California, Florida, Hawaii, and Puerto Rico. In total, the species of Phytophthora have a broad host range and have been reported to attack more than 25 palm species. "Bud rot is always fatal to coconut trees, but other smaller palms like parlor palms have been saved by application of metalaxyl to prevent pathogen establishment," said Janice Uchida, plant pathologist from the University of Hawaii. Uchida’s laboratory is currently screening new chemicals to control Phytophthora diseases.


More on this subject, including factors leading to infection, symptoms, and disease management strategies, is available in The Compendium of Ornamental Palm Diseases and Disorders published by APS PRESS (http://www.shopapspress.org/newandonsath1.html). Additional information on palm disease can also be found in this month’s APS feature article at http://www.apsnet.org/online/feature/palm.

The American Phytopathological Society (APS) is a non-profit, professional scientific organization leading the fight against plant diseases for a healthier world with 5,000 members worldwide.

Amy Steigman | EurekAlert!
Further information:
http://www.apsnet.org/
http://www.shopapspress.org/newandonsath1.html
http://www.apsnet.org/online/feature/palm

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>