Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson scientists unlocking secrets of cholesterol transport in body

24.02.2004


Scientists at Jefferson Medical College and Jefferson’s Kimmel Cancer Center have discovered one part of the mechanism behind a popular anti-cholesterol drug.



Steven Farber, Ph.D., assistant professor of microbiology and immunology at Jefferson Medical College of Thomas Jefferson University in Philadelphia, Eric Smart, Ph.D., at the University of Kentucky and their co-workers have found that treating hypercholesterolemic mice with the drug ezetimibe (Zetia) disrupts a complex of two proteins in the intestine. At the same time, they used "antisense" molecules to prevent the formation of the complex in zebrafish, resulting in impaired cholesterol absorption in the intestine. The results suggest that these proteins are integral parts of an unidentified cholesterol transport system in the intestine.

A better understanding of the mechanisms behind cholesterol transport and absorption in the intestine could lead to improved therapies for obesity, diabetes and cardiovascular disease.


Dr. Farber and his colleagues report their findings February 23, 2004 in the Proceedings of the National Academy of Sciences. Specifically, the researchers found that two proteins – Caveolin 1 and Annexin 2 – were bound extremely tightly in the intestines. When this association was disrupted in zebrafish embryos, they absorbed a cholesterol "analog" more poorly. The scientists also found a similar close association of these proteins in mouse intestinal cells not found in other cells.

When the team treated mice that were fed a high fat Western diet with Zetia, the two proteins separated. "This was truly an unexpected result," Dr. Farber says. "How cholesterol levels can influence the ability of Zetia to disrupt the complex remains a mystery," he says, adding that both he and Dr. Smart plan to study the question in the near future. Ezetimibe blocks cholesterol absorption in the intestines, and as a result, scientists have inferred the existence of a cholesterol transport system in the intestines. The drug works differently than the popular statins, which inhibit cholesterol synthesis in the liver. But no one has identified molecularly how ezetimibe works.

"We’ve identified the components of the intestine that likely mediate the effect of Zetia," Dr. Farber says. "These proteins probably act as a shuttling system that moves cholesterol through cells." But, he adds, multiple proteins could be involved.

In a recent paper just published in the journal Science, researchers at Schering-Plough Research Institute demonstrated that mice that lack a protein, NPC1L1, absorb very little cholesterol, though the scientists failed to show a direct interaction between Zetia and NPC1L1. Dr. Farber’s group was able to show that Calveolin 1 directly binds to Zetia. "This is a very exciting week in the lipid biology field," he says. "It’s possible that NPC1L1 and our protein complex work together in some yet to be discovered manner."

Given the findings of the two papers, he says, "Now you could try different drugs to see which ones break up the complex, and perhaps not only make better drugs, but improve our understanding of the genes that regulate this process."


Additional Contact Information: Steve Benowitz or Phyllis Fisher
After Hours: 215-955-6060

Steve Benowitz | EurekAlert!
Further information:
http://www.tju.edu/

More articles from Life Sciences:

nachricht Organ Crosstalk: Fatty Liver Can Cause Damage to Other Organs
18.08.2017 | Deutsches Zentrum für Diabetesforschung

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>