Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mice Cloned from Olfactory Cells

16.02.2004


Researchers have successfully cloned a mouse using mature olfactory neurons as the genetic donor. The scientists credit the idea for the experiments to Woody Allen whose classic comedy Sleeper depicted scientists who try to clone a dead dictator from his nose.


The images are of a newborn mouse cloned from an olfactory sensory neuron that had been marked with a genetic change so that it would be green under fluorescent light. Here you see on the right, a green cloned pup and in the upper left a normal non-green newborn mouse for comparison.



The current study aims to answer longstanding questions about the developmental potential of mature cells. In doing their experiments, the researchers were seeking to determine whether a single mature olfactory neuron, when introduced into an egg, or oocyte, depleted of its nucleus, could revert to an undifferentiated state in which it could give rise to an adult mouse possessing the full range of olfactory receptors.

Indeed, the resulting mice exhibited an array of well organized odorant receptors that were indistinguishable from those of normal mice, the researchers reported on February 15, 2004, in an article published in an advance online publication in the journal Nature. The research was performed in the laboratories of Rudolf Jaenisch at the Whitehead Institute for Biomedical Research at MIT, and Richard Axel, a Howard Hughes Medical Institute investigator at Columbia University. Co-lead authors on the paper were Kevin Eggan in Jaenisch’s laboratory and Kristin Baldwin in Axel’s laboratory.


“Our study demonstrates for the first time that animals can be derived from the nucleus of mature neurons following transfer into the oocyte. Because the cloned animals are normal, our experiment also shows that [some] brain functions do not involve genetic alterations of the neuron’s genome,” said Jaenisch.

According to the researchers, previous cloning efforts had failed to clone animals from the nuclei of any mature “post-mitotic” cells such as neurons - that is, those that had ceased dividing to produce new cells.

A central question, said the scientists, was whether mature cells had undergone certain irreversible genetic processes, such as gene rearrangements, that would prevent them from reprogramming their nuclei to allow totipotent development. These processes might interfere with the cell’s ability to become totipotent, a property of certain stem cells that permits them to differentiate into any cell type

The researchers chose olfactory neurons as the source of genetic material because previous research had suggested that these cells might undergo gene rearrangements during development. Whatever the underlying process involved in generating their spectacular diversity, olfactory neurons are distinguished by their ability to randomly express any one of some 1,500 diverse odor receptor genes. Such genes give rise to the protein receptors on the surface of the neurons that detect specific chemical odorants.

In their efforts, the researchers in Axel’s laboratory generated mice with olfactory sensory neurons tagged using genetic marker molecules. Using standard cloning techniques, the researchers in Jaenisch’s laboratory then isolated individual neurons, removed nuclei from the tagged cells and introduced the nuclei into mouse eggs from which the nuclei had been removed. When these eggs were introduced into surrogate mother mice, the resulting offspring proved viable and fertile. Furthermore, they exhibited the normal pattern of odorant-receptor gene expression and organization of odorant receptor genes.

According to Axel, the cloning achievement eliminates one potential mechanism and narrows the possible ways in which a cell chooses one of thousands of receptor genes. The findings also demonstrate that the developmental changes are reversible.

Axel said that the cloning technique should be broadly applicable. “From a mechanistic point of view, it’s very important to be able to investigate whether irreversible changes in the DNA accompany development, differentiation and maturation,” he said. “This approach, although technologically demanding, affords an opportunity to detect those changes that are irreversible in virtually all cells.”

Axel emphasized that their experiments had no application to the newly announced achievement by South Korean scientists in cloning human embryos. “Our experiments were performed largely to address problems in neuronal diversity,” he said.

Jim Keeley | HHMI
Further information:
http://www.hhmi.org/news/axel3.html

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>