Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RNA inner workings partly unveiled in Stanford study

13.02.2004


In the world of molecules, DNA tends to get top billing at the expense of RNA, which is critical for turning DNA’s genetic blueprint into working proteins. Researchers at the Stanford University School of Medicine have published significant insights into how the RNA molecule completes this task in two back-to-back papers in the Feb. 13 issue of Science.



All the genetic information contained in DNA is silent, said Roger Kornberg, PhD, the Mrs. George A. Wizner Professor in Medicine and professor of structural biology. What gives it a voice is RNA polymerase, the enzyme that copies DNA into RNA through a process called transcription. Along with more than a dozen helper molecules, RNA polymerase determines which proteins are produced within a cell. But before scientists can understand the transcription process, they must first unveil the inner structure of RNA polymerase.

Kornberg’s lab has been studying RNA and the enzyme that makes it for more than 20 years. Past studies from the lab have shown that the machinery of the RNA polymerase system is in three layers. Kornberg’s group published groundbreaking findings in 2001 outlining the structure of the innermost layer. The two current papers focus on the middle layer, which contains many of the helper molecules.


To see the structure of the protein layers, the group passed extremely bright X-rays - generated at the Stanford Synchrotron Radiation Laboratory, or SSRL - through a crystallized version of the proteins. The crystal scatters the X-rays, generating a distinctive diffraction pattern that reveals the sample’s three-dimensional atomic structure.

Part of their current work looked at RNA polymerase along with one of the five helper molecules, called transcription factors, in the middle layer. From the structure that could be seen when just a single transcription factor was added, the team extrapolated a picture of the entire middle layer, which, Kornberg said, enabled them to understand how the enzyme locates a gene along a stretch of DNA.

At the level of detail the group obtained, some intriguing structures came to light, offering the first real understanding of the defining events of transcription. They saw a docking site that might reveal the starting point of transcription, a spot where the RNA polymerase is correctly situated on a gene. They also saw something completely unexpected: a "finger" of the helper factor protein that pokes into the enzyme’s active center. The researchers speculate that the poking action may help slow down the transcription process so that the strands of DNA and newly made RNA can separate properly.

"This turned out to be quite interesting. No one had even speculated about it before," said David Bushnell, PhD, a research associate and first author of one of the papers. "We think the protrusion reaching into the enzyme makes sense of a lot of genetic and biochemical data that people were scratching their heads over. Figuring out the structure gave remarkable context to years of hard work by many people."

The second paper describes how the team caught a snapshot of the polymerase in action, something that hadn’t been done before. Kenneth Westover, an MD/PhD student and first author of the second paper, developed a method in which the newly made RNA could be visualized coming off the DNA.

"When we look to see where the two separate, we find that lo and behold, the RNA passes through a hole and the DNA comes out over the top," said Kornberg. "The separation that is achieved at the hole is revealed for the first time in this paper."

How the strands of RNA and DNA are pushed apart has a simple physical explanation: the RNA polymerase inserts itself as a wedge between the two, with the RNA trailing out the hole. That same opening is the one that the protein finger dips into. "One might have imagined this, but to see it is another thing entirely," said Kornberg.

"These two papers are both quite astonishing in what they reveal," he added. "One because it shows us this protein finger that pokes through and because we can intuit all the rest of the structure around the polymerase, and the other paper because it shows this amazing dynamic mechanism by which the RNA is separated from DNA."

To find good diffracting crystals out of the hundreds made, the researchers used a new automatic robotic screening system developed at SSRL with grants from the National Institutes of Health. The automated screening system stores the tiny frozen crystals on nylon loops at the end of metal pins. A robotic arm retrieves each pin and aligns the crystal in the path of the X-ray beam. The robot can automatically test 300 samples without the need for researchers to carry out a manual transfer for each sample as was done in the past.

"It saves a lot of time while optimizing the quality of the data," said SSRL scientist Mike Soltis, PhD, head of the macromolecular crystallography group. "With the new system, the Kornberg group screened 130 crystals in seven hours without losing any. Two weeks earlier, they had manually mounted 100 crystals in 24 hours, losing a few crystals and much sleep in the process."

The Kornberg group plans to build upon their findings and continue to explore the inner workings of RNA polymerase. "Because we have overcome technical problems in making the complexes, it opens a huge opportunity for a lot of other variations of this. We can do a lot of experiments that we couldn’t do before," said Westover.


Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

PRINT MEDIA CONTACTS:
Mitzi Baker at 650-725-2106 (mitzibaker@stanford.edu)
Amy Adams at 650-723-3900 (amyadams@stanford.edu)

Mitzi Baker | EurekAlert!
Further information:
http://med-www.stanford.edu/MedCenter/MedSchool/
http://mednews.stanford.edu

More articles from Life Sciences:

nachricht 'Lipid asymmetry' plays key role in activating immune cells
20.02.2018 | Biophysical Society

nachricht New printing technique uses cells and molecules to recreate biological structures
20.02.2018 | Queen Mary University of London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>