Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RNA inner workings partly unveiled in Stanford study

13.02.2004


In the world of molecules, DNA tends to get top billing at the expense of RNA, which is critical for turning DNA’s genetic blueprint into working proteins. Researchers at the Stanford University School of Medicine have published significant insights into how the RNA molecule completes this task in two back-to-back papers in the Feb. 13 issue of Science.



All the genetic information contained in DNA is silent, said Roger Kornberg, PhD, the Mrs. George A. Wizner Professor in Medicine and professor of structural biology. What gives it a voice is RNA polymerase, the enzyme that copies DNA into RNA through a process called transcription. Along with more than a dozen helper molecules, RNA polymerase determines which proteins are produced within a cell. But before scientists can understand the transcription process, they must first unveil the inner structure of RNA polymerase.

Kornberg’s lab has been studying RNA and the enzyme that makes it for more than 20 years. Past studies from the lab have shown that the machinery of the RNA polymerase system is in three layers. Kornberg’s group published groundbreaking findings in 2001 outlining the structure of the innermost layer. The two current papers focus on the middle layer, which contains many of the helper molecules.


To see the structure of the protein layers, the group passed extremely bright X-rays - generated at the Stanford Synchrotron Radiation Laboratory, or SSRL - through a crystallized version of the proteins. The crystal scatters the X-rays, generating a distinctive diffraction pattern that reveals the sample’s three-dimensional atomic structure.

Part of their current work looked at RNA polymerase along with one of the five helper molecules, called transcription factors, in the middle layer. From the structure that could be seen when just a single transcription factor was added, the team extrapolated a picture of the entire middle layer, which, Kornberg said, enabled them to understand how the enzyme locates a gene along a stretch of DNA.

At the level of detail the group obtained, some intriguing structures came to light, offering the first real understanding of the defining events of transcription. They saw a docking site that might reveal the starting point of transcription, a spot where the RNA polymerase is correctly situated on a gene. They also saw something completely unexpected: a "finger" of the helper factor protein that pokes into the enzyme’s active center. The researchers speculate that the poking action may help slow down the transcription process so that the strands of DNA and newly made RNA can separate properly.

"This turned out to be quite interesting. No one had even speculated about it before," said David Bushnell, PhD, a research associate and first author of one of the papers. "We think the protrusion reaching into the enzyme makes sense of a lot of genetic and biochemical data that people were scratching their heads over. Figuring out the structure gave remarkable context to years of hard work by many people."

The second paper describes how the team caught a snapshot of the polymerase in action, something that hadn’t been done before. Kenneth Westover, an MD/PhD student and first author of the second paper, developed a method in which the newly made RNA could be visualized coming off the DNA.

"When we look to see where the two separate, we find that lo and behold, the RNA passes through a hole and the DNA comes out over the top," said Kornberg. "The separation that is achieved at the hole is revealed for the first time in this paper."

How the strands of RNA and DNA are pushed apart has a simple physical explanation: the RNA polymerase inserts itself as a wedge between the two, with the RNA trailing out the hole. That same opening is the one that the protein finger dips into. "One might have imagined this, but to see it is another thing entirely," said Kornberg.

"These two papers are both quite astonishing in what they reveal," he added. "One because it shows us this protein finger that pokes through and because we can intuit all the rest of the structure around the polymerase, and the other paper because it shows this amazing dynamic mechanism by which the RNA is separated from DNA."

To find good diffracting crystals out of the hundreds made, the researchers used a new automatic robotic screening system developed at SSRL with grants from the National Institutes of Health. The automated screening system stores the tiny frozen crystals on nylon loops at the end of metal pins. A robotic arm retrieves each pin and aligns the crystal in the path of the X-ray beam. The robot can automatically test 300 samples without the need for researchers to carry out a manual transfer for each sample as was done in the past.

"It saves a lot of time while optimizing the quality of the data," said SSRL scientist Mike Soltis, PhD, head of the macromolecular crystallography group. "With the new system, the Kornberg group screened 130 crystals in seven hours without losing any. Two weeks earlier, they had manually mounted 100 crystals in 24 hours, losing a few crystals and much sleep in the process."

The Kornberg group plans to build upon their findings and continue to explore the inner workings of RNA polymerase. "Because we have overcome technical problems in making the complexes, it opens a huge opportunity for a lot of other variations of this. We can do a lot of experiments that we couldn’t do before," said Westover.


Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

PRINT MEDIA CONTACTS:
Mitzi Baker at 650-725-2106 (mitzibaker@stanford.edu)
Amy Adams at 650-723-3900 (amyadams@stanford.edu)

Mitzi Baker | EurekAlert!
Further information:
http://med-www.stanford.edu/MedCenter/MedSchool/
http://mednews.stanford.edu

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>