Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RNA inner workings partly unveiled in Stanford study

13.02.2004


In the world of molecules, DNA tends to get top billing at the expense of RNA, which is critical for turning DNA’s genetic blueprint into working proteins. Researchers at the Stanford University School of Medicine have published significant insights into how the RNA molecule completes this task in two back-to-back papers in the Feb. 13 issue of Science.



All the genetic information contained in DNA is silent, said Roger Kornberg, PhD, the Mrs. George A. Wizner Professor in Medicine and professor of structural biology. What gives it a voice is RNA polymerase, the enzyme that copies DNA into RNA through a process called transcription. Along with more than a dozen helper molecules, RNA polymerase determines which proteins are produced within a cell. But before scientists can understand the transcription process, they must first unveil the inner structure of RNA polymerase.

Kornberg’s lab has been studying RNA and the enzyme that makes it for more than 20 years. Past studies from the lab have shown that the machinery of the RNA polymerase system is in three layers. Kornberg’s group published groundbreaking findings in 2001 outlining the structure of the innermost layer. The two current papers focus on the middle layer, which contains many of the helper molecules.


To see the structure of the protein layers, the group passed extremely bright X-rays - generated at the Stanford Synchrotron Radiation Laboratory, or SSRL - through a crystallized version of the proteins. The crystal scatters the X-rays, generating a distinctive diffraction pattern that reveals the sample’s three-dimensional atomic structure.

Part of their current work looked at RNA polymerase along with one of the five helper molecules, called transcription factors, in the middle layer. From the structure that could be seen when just a single transcription factor was added, the team extrapolated a picture of the entire middle layer, which, Kornberg said, enabled them to understand how the enzyme locates a gene along a stretch of DNA.

At the level of detail the group obtained, some intriguing structures came to light, offering the first real understanding of the defining events of transcription. They saw a docking site that might reveal the starting point of transcription, a spot where the RNA polymerase is correctly situated on a gene. They also saw something completely unexpected: a "finger" of the helper factor protein that pokes into the enzyme’s active center. The researchers speculate that the poking action may help slow down the transcription process so that the strands of DNA and newly made RNA can separate properly.

"This turned out to be quite interesting. No one had even speculated about it before," said David Bushnell, PhD, a research associate and first author of one of the papers. "We think the protrusion reaching into the enzyme makes sense of a lot of genetic and biochemical data that people were scratching their heads over. Figuring out the structure gave remarkable context to years of hard work by many people."

The second paper describes how the team caught a snapshot of the polymerase in action, something that hadn’t been done before. Kenneth Westover, an MD/PhD student and first author of the second paper, developed a method in which the newly made RNA could be visualized coming off the DNA.

"When we look to see where the two separate, we find that lo and behold, the RNA passes through a hole and the DNA comes out over the top," said Kornberg. "The separation that is achieved at the hole is revealed for the first time in this paper."

How the strands of RNA and DNA are pushed apart has a simple physical explanation: the RNA polymerase inserts itself as a wedge between the two, with the RNA trailing out the hole. That same opening is the one that the protein finger dips into. "One might have imagined this, but to see it is another thing entirely," said Kornberg.

"These two papers are both quite astonishing in what they reveal," he added. "One because it shows us this protein finger that pokes through and because we can intuit all the rest of the structure around the polymerase, and the other paper because it shows this amazing dynamic mechanism by which the RNA is separated from DNA."

To find good diffracting crystals out of the hundreds made, the researchers used a new automatic robotic screening system developed at SSRL with grants from the National Institutes of Health. The automated screening system stores the tiny frozen crystals on nylon loops at the end of metal pins. A robotic arm retrieves each pin and aligns the crystal in the path of the X-ray beam. The robot can automatically test 300 samples without the need for researchers to carry out a manual transfer for each sample as was done in the past.

"It saves a lot of time while optimizing the quality of the data," said SSRL scientist Mike Soltis, PhD, head of the macromolecular crystallography group. "With the new system, the Kornberg group screened 130 crystals in seven hours without losing any. Two weeks earlier, they had manually mounted 100 crystals in 24 hours, losing a few crystals and much sleep in the process."

The Kornberg group plans to build upon their findings and continue to explore the inner workings of RNA polymerase. "Because we have overcome technical problems in making the complexes, it opens a huge opportunity for a lot of other variations of this. We can do a lot of experiments that we couldn’t do before," said Westover.


Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

PRINT MEDIA CONTACTS:
Mitzi Baker at 650-725-2106 (mitzibaker@stanford.edu)
Amy Adams at 650-723-3900 (amyadams@stanford.edu)

Mitzi Baker | EurekAlert!
Further information:
http://med-www.stanford.edu/MedCenter/MedSchool/
http://mednews.stanford.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>