Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Research Technique Provides Clues into Cell Growth: Findings May Help Scientists Understand Tumor Spread

22.01.2004


Researchers at Washington University School of Medicine in St. Louis have developed a new probe that allows them to watch protein activity in living cells. In their initial study, which focused on a protein tentatively linked to the spread of cancerous cells, the team both proved their new technique works and revealed surprising new details about the protein’s activity.



The protein in this study, neuronal Wiskott–Aldrich syndrome protein (N-WASP), is naturally found in every cell in the body and is known to be involved in a wide range of cellular processes. One of its key functions is believed to be guiding cellular growth and movement within the body, including when tumor cells metastasize, or spread, from one organ to another.

“To our knowledge this is the first probe of its kind that allows us to actually see in a living system where, when and how proteins are activated,” says first author Michael E. Ward, a graduate student in anatomy and neurobiology. “This is significant progress in moving from examining the biochemistry of ground up cells to being able to study it in an intact cell.”


The study was led by Yi Rao, Ph.D., associate professor of anatomy and neurobiology. It appears online in the early edition of the Proceedings of the National Academy of Sciences and will be featured on the cover of the Jan. 27 print edition of the journal.
To design this new probe, the team took advantage of the fact that N-WASP folds in half when it is inactivated. They latched two fluorescent proteins onto the opposing ends of N-WASP — one yellow and one cyan (greenish-blue).

When stimulated by a particular wavelength of light, fluorescent proteins normally release energy in the form of light. In the case of yellow and cyan proteins, the light emitted appears either yellow or cyan. Under certain circumstances, light energy from the cyan protein can be transferred to the yellow protein since cyan is a higher energy light than yellow and energy naturally jumps from high- to low-energy states. The team hypothesized that, as N-WASP becomes activated and folds, the two ends would be brought closer together, resulting in an increase in the brightness of the yellow protein and a decrease in the brightness of the cyan protein. This phenomenon is called fluorescence resonance energy transfer.

While this phenomenon has been used previously to examine the activity of proteins other than N-WASP, this is the first study in which the natural folding and unfolding of a single protein was observed. All former efforts relied on artificially tethering two separate proteins together, which can produce deceptive results.

As they had hoped, the ratio of cyan to yellow light did accurately reflect N-WASP activity. Normally, N-WASP, so named because it belongs to a family of proteins implicated in the rare genetic disorder Wiskott-Aldrich syndrome, is only marginally activated by one of two proteins, PIP2 and CDC42. However, it becomes highly activated when simultaneously stimulated by the two proteins. In accordance with this synergistic effect, activation with only one of these proteins resulted in only a modest decrease in cyan light and increase in yellow light, while simultaneous activation with both resulted in a much more dramatic effect.

“It was exciting to discover that we could not only visualize N-WASP activation but also could visualize the specific integration of PIP2 and CDC42 stimulation,” Ward says. “This supports the idea that our probe is sensitive to normal cellular signaling processes.”

Using their new technique, the team recorded preliminary observations of N-WASP activation throughout living cells placed in a petri dish.

Traditionally, N-WASP was thought to be significantly active in filopodia, thin filaments that protrude from cells to help navigate through the body. As expected, N-WASP activity was high in these compartments.

However, several of the team’s other observations surprised them.

First, N-WASP and its stimulator proteins CDC42 and PIP2 all were active in “ruffles,” animated ridges on the cell membrane that also help cells move forward. According to Ward, research on N-WASP has never highlighted its potential role in ruffling.

Second, some of the highest levels of N-WASP activity were in the nucleus, despite the general assumption that the protein’s main functions are in cell movement, which occurs in the periphery of the cell.

“Because we were able to visualize where N-WASP is activated, we were able to show it’s activated in certain unexpected cellular compartments,” Ward says. “Now that we’ve demonstrated this technique is effective, we hope to further examine this protein’s activity and also to see whether similar probes can help us visualize other folding proteins.”


Ward ME, Wu JY, Rao Y. Visualization of spatially and temporally regulated N-WASP activity during cytoskeletal reorganization in living cells. Proceedings of the National Academy of Sciences, Jan. 27, 2004.

Funding from the National Institutes of Health, the Society for Progressive Supranuclear Palsy, the National Brain Tumor Foundation, the Muscular Dystrophy Association and the Leukemia Society of America supported this research.

Gila Z. Reckess | WUSTL
Further information:
http://aladdin.wustl.edu/medadmin/PAnews.nsf/news/2DA888C74CBB9BF686256E22006553A9?OpenDocument

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>