Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wright State research biologist studies birds to learn how our stomachs convey thoughts of hunger

07.01.2004


A research biologist at Wright State University is studying rhythmic cycles in birds to learn if we have a physiological clock in our stomach that determines when we get hungry.



Thomas Van’t Hof, Ph.D., an assistant professor of biological sciences, recently returned from Japan, where he presented lectures and conducted research on circadian (24-hour) rhythms in birds. He visited Okayama University of Science, a sister university of Wright State, plus the University of Tokyo and Nagoya University.

“We often think of our stomachs as having a clock,” he said. “We anticipate food, and our gastrointestinal tract is prepared for food when it arrives. Our research investigates how this happens.”


Van’t Hof, who recently joined the Wright State faculty after nine years with the internationally-recognized Max-Planck Institute in Germany, said biological clocks in the brain, and maybe in the gut, guide hunger impulses and other daily activities in mammals and birds.

His research in Japan involved clock genes, or genes that cycle in a daily pattern, that are found in the gut. “We want to understand how the clock in the gut is sustained, the role of food and nutrition in sustaining the gut’s rhythm and the role of melatonin, a chemical in the brain, in organizing the activity of the gut,” he explained.

Van’t Hof said the goal of his research is “to increase our understanding of these clocks in the gut with respect to metabolic conditions, and also to shed light on why we get hungry when we do and why we often eat more than we should.”

The Wright State faculty member has presented several lectures on this topic in the past year in Japan and the U.S. and has been pursuing research on biological clocks for more than 10 years.

For more details on his research, contact Van’t Hof at 937-775-2163 or thomas.vanthof@wright.edu.

Richard Doty | Wright State University
Further information:
http://www.wright.edu/cgibin/news_item.cgi?600

More articles from Life Sciences:

nachricht 3D printer inks from the woods
30.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht How circadian clocks communicate with each other
30.05.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Reptile vocalization is surprisingly flexible

30.05.2017 | Life Sciences

EU research project DEMETER strives for innovation in enzyme production technology

30.05.2017 | Power and Electrical Engineering

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>