Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wright State research biologist studies birds to learn how our stomachs convey thoughts of hunger

07.01.2004


A research biologist at Wright State University is studying rhythmic cycles in birds to learn if we have a physiological clock in our stomach that determines when we get hungry.



Thomas Van’t Hof, Ph.D., an assistant professor of biological sciences, recently returned from Japan, where he presented lectures and conducted research on circadian (24-hour) rhythms in birds. He visited Okayama University of Science, a sister university of Wright State, plus the University of Tokyo and Nagoya University.

“We often think of our stomachs as having a clock,” he said. “We anticipate food, and our gastrointestinal tract is prepared for food when it arrives. Our research investigates how this happens.”


Van’t Hof, who recently joined the Wright State faculty after nine years with the internationally-recognized Max-Planck Institute in Germany, said biological clocks in the brain, and maybe in the gut, guide hunger impulses and other daily activities in mammals and birds.

His research in Japan involved clock genes, or genes that cycle in a daily pattern, that are found in the gut. “We want to understand how the clock in the gut is sustained, the role of food and nutrition in sustaining the gut’s rhythm and the role of melatonin, a chemical in the brain, in organizing the activity of the gut,” he explained.

Van’t Hof said the goal of his research is “to increase our understanding of these clocks in the gut with respect to metabolic conditions, and also to shed light on why we get hungry when we do and why we often eat more than we should.”

The Wright State faculty member has presented several lectures on this topic in the past year in Japan and the U.S. and has been pursuing research on biological clocks for more than 10 years.

For more details on his research, contact Van’t Hof at 937-775-2163 or thomas.vanthof@wright.edu.

Richard Doty | Wright State University
Further information:
http://www.wright.edu/cgibin/news_item.cgi?600

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>