Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Wright State research biologist studies birds to learn how our stomachs convey thoughts of hunger


A research biologist at Wright State University is studying rhythmic cycles in birds to learn if we have a physiological clock in our stomach that determines when we get hungry.

Thomas Van’t Hof, Ph.D., an assistant professor of biological sciences, recently returned from Japan, where he presented lectures and conducted research on circadian (24-hour) rhythms in birds. He visited Okayama University of Science, a sister university of Wright State, plus the University of Tokyo and Nagoya University.

“We often think of our stomachs as having a clock,” he said. “We anticipate food, and our gastrointestinal tract is prepared for food when it arrives. Our research investigates how this happens.”

Van’t Hof, who recently joined the Wright State faculty after nine years with the internationally-recognized Max-Planck Institute in Germany, said biological clocks in the brain, and maybe in the gut, guide hunger impulses and other daily activities in mammals and birds.

His research in Japan involved clock genes, or genes that cycle in a daily pattern, that are found in the gut. “We want to understand how the clock in the gut is sustained, the role of food and nutrition in sustaining the gut’s rhythm and the role of melatonin, a chemical in the brain, in organizing the activity of the gut,” he explained.

Van’t Hof said the goal of his research is “to increase our understanding of these clocks in the gut with respect to metabolic conditions, and also to shed light on why we get hungry when we do and why we often eat more than we should.”

The Wright State faculty member has presented several lectures on this topic in the past year in Japan and the U.S. and has been pursuing research on biological clocks for more than 10 years.

For more details on his research, contact Van’t Hof at 937-775-2163 or

Richard Doty | Wright State University
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>