Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Urban black bears becoming couch potatoes, study says

25.11.2003


Black bears living in and around urban areas are up to a third less active and weigh up to thirty percent more than bears living in wild areas, according to a recent study by scientists from the Bronx Zoo-based Wildlife Conservation Society (WCS).



The study, published in the latest issue of the Journal of Zoology says that black bears are spending less time hunting for natural food, which can consist of everything from berries up to adult deer. Instead, they are choosing to forage in dumpsters behind fast-food restaurants, shopping centers, and suburban homes, often eating their fill in far less time than it would take to forage or hunt prey.

"Black bears in urban areas are putting on weight and doing less strenuous activities," said WCS biologist Dr. Jon Beckmann, the lead author of the study. "They’re hitting the local dumpster for dinner, then calling it a day."


In addition, the authors say that urban black bears are becoming more nocturnal due to increased human activities, which bears tend to avoid. Bears are also spending less time denning than those populations living in wild areas, which the authors say is linked to garbage as a readily available food source.

The authors suggest that as humans continue to expand into wild areas, and as bears colonize urbanized regions, people must be educated to reduce potential conflicts. Local ordinances should be passed mandating bear-proof garbage containers for homes and businesses. "Black bears and people can live side-by-side, as long as bears don’t become dependent on hand-outs and garbage for food," Beckmann said. "Lawmakers should take a proactive stance to ensure that these important wild animals remain part of the landscape."



COPIES OF THE STUDY ARE AVAILABLE THROUGH WCS’S CONSERVATION COMMUNICATIONS OFFICE (1-718-220-3682)

CONTACT: Stephen Sautner (718-220-3682; ssautner@wcs.org)
John Delaney (718-220-3275; jdelaney@wcs.org)

Stephen Sautner | Wildlife Conservation Society
Further information:
http://wcs.org/

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Gecko adhesion technology moves closer to industrial uses

13.12.2017 | Information Technology

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure

13.12.2017 | Physics and Astronomy

Research reveals how diabetes in pregnancy affects baby's heart

13.12.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>