Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bird ’breathalyzer’ helps assess migratory diet

25.11.2003


While breathalyzers help police crack down on drunk driving, a similar new device is helping a University of Rhode Island graduate student analyze the dietary changes of migrating songbirds.



Just as human breathalyzers measure an individual’s blood-alcohol level, David Podlesak says that his bird breathalyzer measures the "carbon signature" of a bird’s last meal.

"We measure the ratio of the isotopes of carbon 12 to carbon 13, and this carbon signature in their breath can tell us what the bird ate earlier in the day," said the 36-year-old Wakefield resident who is nearing completion of his doctorate.


Podlesak is the first to adapt and use the bird breathalyzer on small songbirds and to verify that the measurements are accurate. The device was created recently by Kent Hatch at Brigham Young University for use with pigeons.

The birds breathe into a small mask connected to a balloon filled with pure oxygen. As the bird inhales the oxygen, it exhales carbon dioxide, replacing the oxygen in the balloon with carbon dioxide within one minute. The carbon dioxide is then analyzed for its carbon signature.

This carbon signature slowly makes its way from the bird’s breath to its blood and eventually into its feathers. Podlesak is the first to use carbon signatures in different tissues from the same bird to create a dietary timeline for migrating birds.

"The signature in the feather tells us what the bird ate on its breeding grounds a month or two ago; the signature in its red blood cells tells what it ate within the last two or three weeks; and the signature in its plasma indicates what it ate two or three days ago," Podlesak said. "If the signature is different between its feathers and its breath, that says that the bird ate something different or changed its diet and is using a different resource to fatten up on migration."

That’s an important distinction, according to Podlesak. "If birds are looking for different foods while they’re migrating -- maybe something that has more proteins or more fats -- then we need to make sure that those resources are available at popular migratory stopover sites."

Podlesak’s research is based on birds caught on Block Island, R.I., one of the major sites on the East Coast where birds stop to feed during their southward migration each fall. He captures yellow-rumped warblers, white-throated sparrows, ruby crowned kinglets, golden crowned kinglets and gray catbirds in nets, and takes breath, blood and feather samples before releasing the birds back into the wild.

His results so far have been insightful and have raised additional questions. Yellow rumped warblers, for instance, are known to primarily eat bayberry on migration. But in each of the last two years, Podlesak caught a number of warblers that ate something very different than was expected. He wonders if the birds stopped somewhere out of the ordinary or if there is an unknown migratory stopover site that provides the birds with an unusual diet.

Podlesak also discovered that some white-throated sparrows switched their diet during migration from insects and berries to corn, suggesting that the birds ate at bird feeders. This raises questions about the importance of feeders to the birds as they migrate. Podlesak hopes to answer questions about both species with additional research. Funding for his research comes from the National Science Foundation, the URI Agriculture Experiment Station, Sigma Xi, and The Nature Conservancy, which is protecting the coastal scrub habitat on Block Island where Podlesak conducts his field work.

Todd McLeish | EurekAlert!
Further information:
http://www.uri.edu/

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>