Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Domestic animals: ideal models for studying complex characters

24.10.2003


Predisposition to many common diseases – among which cancer, cardiovascular conditions, diabetes, asthma, etc. – is said to be a multifactor phenomenon as it results from numerous genes as well as environmental factors. Identifying such predisposition genes is one of the major challenges in modern genetics and could contribute to establishing new preventive medicine patterns and developing new specific drugs.



However, the identification of predisposition genes appeared to be extremely difficult in humans. Despite huge investments, “successes” can be counted on the fingers of one hand.

Considering our domestic animals’ history, such populations are particularly well-adapted to the analysis of multifactor characters. This was shown most dramatically by the recent identification of a mutation in an IGF2 gene regulatory element leading to a muscle mass increase in pigs. A particularly ingenious genetic analysis allowed experts to isolate the relevant mutation among 280 other mutations identified in the gene. Functional analyses subsequently indicated that the mutation inactivated an inhibitor of the IGF2 production in muscles. As a consequence, it increased IGF2 secretion and muscle growth.


The research work was carried out by the team of Prof. Dr Michel Georges from the University of Liège (Minh Nguyen, Carine Nezer, Catherine Collette, Laurence Moreau), a member of the Faculty of Veterinary Medicine and of the new Centre for Applied Genomics (GIGA) in cooperation with Prof. Dr Leif Andersson’s team from the University of Uppsala and was financed by the Belgian Federal Ministry of Agriculture and Belgian company Gentec. It will be published in journal Nature on October 23. This prestigious publication results from the extraordinary, so far unequalled resolution achieved in a multifactor character analysis.

The identification of this mutation in the IGF2 gene follows the recent identification of two other genes shown to influence complex characters in domestic animals: the DGAT1 gene in bovines and the CLPG gene in sheep. The team of Prof. Dr Michel Georges also played a decisive role in both genes’ identification. Despite negligible investments in animal genetics – compared to human genetics – the number of “successes” appears to be virtually equivalent, which clearly demonstrates these populations’ interest.

Numerous routinely assessed multifactor characters in domestic animals rely on metabolic pathways likely to be implied in human multifactor pathology determinism. Relationships were noted between fat depots in carcases and obesity, calcium metabolism in laying hens and osteoporosis, glycogen levels in meat and diabetes, etc. Identifying genes that influence such multifactor production characters might thus significantly contribute to improving the knowledge of molecular mechanisms implied in human complex pathology determinism.

This is one of the reasons why domestic species’ genome sequencing – in addition to its agronomic impact – is very seriously considered, in particular by the American National Institute of Health (NIH). In this respect, this valuable opportunity is most regrettably ignored by the European Community.

Didier Moreau | alfa

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>