Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Saliva spits out information on chemical exposure

24.10.2003


Home testing of saliva to measure personal hormone levels is gaining popularity, with dozens of companies offering do-it-yourself, mail-in test kits. Battelle scientists at the Department of Energy’s Pacific Northwest National Laboratory envision a day when it may be nearly as easy to detect chemical exposure or even nerve gas poisoning — simply by analyzing a victim’s saliva. And the results would be almost immediate.



Using sophisticated mass spectrometry equipment at PNNL, researchers have been able to identify breakdown products of a common pesticide in the saliva of rats exposed to known amounts of the pesticide. The researchers are working now to develop a simpler, portable microanalytical sensor system to quickly diagnose pesticide exposure in humans and a modeling method than can estimate the dose. Researchers say the technology could be adapted to test for a variety of contaminants, including chemical warfare agents.

The research project began with an Environmental Protection Agency grant to study pesticide exposure in adults and children working or living near farms. The research team exposed rats to a common agricultural chemical and found traces in the saliva shortly after exposure.


“The fact that we were able to find the chemical in very low concentrations confirms that saliva can be a reliable, non-invasive method to monitor farm or industrial workers who are exposed routinely to potentially harmful pesticides,” said Jim Campbell, an analytical chemist working with mass spectrometers at PNNL.

Researchers believe saliva monitoring may be able to detect a broad range of chemical contaminants from ongoing occupational exposure, accidents or even acts of war and terrorism.

“The class of pesticides we are studying, organophosphates, are chemically similar and work on the same general principal as nerve gas,” said Charles Timchalk, a Battelle toxicologist at PNNL. “Both pesticides and nerve gases inhibit an enzyme called acetylcholinesterase. Without acetylcholinesterase, nerves, including those responsible for breathing, stop functioning.”

Chemical nerve agents also bind to and disrupt other enzymes, including one called butyrylcholnesterase. “Researchers at the laboratory have demonstrated that rat saliva contains a nearly pure population of this enzyme,” said Campbell. “This data strongly suggests that it’s possible to develop a portable device to yield immediate results from a small amount of saliva. Such a device might save lives in the event of a military or terrorist attack.”

Real-time diagnosis is the key, as some treatments for nerve gas poisoning are effective, if initiated in time. Typically, however, testing for chemical exposure requires drawing blood or collecting urine samples, which must then be sent to a laboratory. Results may be days or weeks away.

“If expanded to identify chemical warfare agents, saliva analysis would not only identify those who need medical treatment, but might also offer up forensic evidence against the attackers,” said Timchalk. “It might be possible to detect trace levels of the chemical agents in the saliva of a terrorist who handled the poisons before releasing them.”

The saliva monitoring technology under development at PNNL is being designed to provide immediate results and be simple enough to be operated in the field by technicians with little training.

“We have demonstrated that a biosensor linked to a hand-held electrochemical detector can identify the organophosphates in solution with a high degree of sensitivity,” said Yuehe Lin, a Battelle analytical chemist at PNNL. “The biosensor consists of electrodes coated with carbon nanotubes. The carbon nantotubes hold the enzymes, which are targeted to the organophosphate chemicals, and electricity is applied. If organophophates are present, there is a decrease in the electrical current that can be correlated to the amount of chemical present. The hand-held biosensor detection system will facilitate the on-site saliva monitoring of exposures to these pesticides.”

The Battelle team hopes to secure additional funding to study saliva testing and monitoring for nerve agents. Meanwhile they continue to develop the technology to assess exposure to agricultural pesticides.

Business inquiries on this or other areas of research at PNNL should be directed to 888-375-PNNL or inquiry@pnl.gov.

Pacific Northwest National Laboratory is a Department of Energy Office of Science research facility that advances the fundamental understanding of complex systems, and provides science-based solutions to some of the nation’s most pressing challenges in national security, energy and environmental quality. The laboratory employs more than 3,800 scientists, engineers, technicians and support staff, and has an annual budget of nearly $600 million. Battelle, based in Columbus, Ohio, has operated PNNL for the federal government since the laboratory’s inception in 1965.

Susan Bauer | PNNL
Further information:
http://www.pnl.gov/news

More articles from Life Sciences:

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

nachricht Self-assembled nanostructures hit their target
23.09.2016 | King Abdullah University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>