Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Saliva spits out information on chemical exposure

24.10.2003


Home testing of saliva to measure personal hormone levels is gaining popularity, with dozens of companies offering do-it-yourself, mail-in test kits. Battelle scientists at the Department of Energy’s Pacific Northwest National Laboratory envision a day when it may be nearly as easy to detect chemical exposure or even nerve gas poisoning — simply by analyzing a victim’s saliva. And the results would be almost immediate.



Using sophisticated mass spectrometry equipment at PNNL, researchers have been able to identify breakdown products of a common pesticide in the saliva of rats exposed to known amounts of the pesticide. The researchers are working now to develop a simpler, portable microanalytical sensor system to quickly diagnose pesticide exposure in humans and a modeling method than can estimate the dose. Researchers say the technology could be adapted to test for a variety of contaminants, including chemical warfare agents.

The research project began with an Environmental Protection Agency grant to study pesticide exposure in adults and children working or living near farms. The research team exposed rats to a common agricultural chemical and found traces in the saliva shortly after exposure.


“The fact that we were able to find the chemical in very low concentrations confirms that saliva can be a reliable, non-invasive method to monitor farm or industrial workers who are exposed routinely to potentially harmful pesticides,” said Jim Campbell, an analytical chemist working with mass spectrometers at PNNL.

Researchers believe saliva monitoring may be able to detect a broad range of chemical contaminants from ongoing occupational exposure, accidents or even acts of war and terrorism.

“The class of pesticides we are studying, organophosphates, are chemically similar and work on the same general principal as nerve gas,” said Charles Timchalk, a Battelle toxicologist at PNNL. “Both pesticides and nerve gases inhibit an enzyme called acetylcholinesterase. Without acetylcholinesterase, nerves, including those responsible for breathing, stop functioning.”

Chemical nerve agents also bind to and disrupt other enzymes, including one called butyrylcholnesterase. “Researchers at the laboratory have demonstrated that rat saliva contains a nearly pure population of this enzyme,” said Campbell. “This data strongly suggests that it’s possible to develop a portable device to yield immediate results from a small amount of saliva. Such a device might save lives in the event of a military or terrorist attack.”

Real-time diagnosis is the key, as some treatments for nerve gas poisoning are effective, if initiated in time. Typically, however, testing for chemical exposure requires drawing blood or collecting urine samples, which must then be sent to a laboratory. Results may be days or weeks away.

“If expanded to identify chemical warfare agents, saliva analysis would not only identify those who need medical treatment, but might also offer up forensic evidence against the attackers,” said Timchalk. “It might be possible to detect trace levels of the chemical agents in the saliva of a terrorist who handled the poisons before releasing them.”

The saliva monitoring technology under development at PNNL is being designed to provide immediate results and be simple enough to be operated in the field by technicians with little training.

“We have demonstrated that a biosensor linked to a hand-held electrochemical detector can identify the organophosphates in solution with a high degree of sensitivity,” said Yuehe Lin, a Battelle analytical chemist at PNNL. “The biosensor consists of electrodes coated with carbon nanotubes. The carbon nantotubes hold the enzymes, which are targeted to the organophosphate chemicals, and electricity is applied. If organophophates are present, there is a decrease in the electrical current that can be correlated to the amount of chemical present. The hand-held biosensor detection system will facilitate the on-site saliva monitoring of exposures to these pesticides.”

The Battelle team hopes to secure additional funding to study saliva testing and monitoring for nerve agents. Meanwhile they continue to develop the technology to assess exposure to agricultural pesticides.

Business inquiries on this or other areas of research at PNNL should be directed to 888-375-PNNL or inquiry@pnl.gov.

Pacific Northwest National Laboratory is a Department of Energy Office of Science research facility that advances the fundamental understanding of complex systems, and provides science-based solutions to some of the nation’s most pressing challenges in national security, energy and environmental quality. The laboratory employs more than 3,800 scientists, engineers, technicians and support staff, and has an annual budget of nearly $600 million. Battelle, based in Columbus, Ohio, has operated PNNL for the federal government since the laboratory’s inception in 1965.

Susan Bauer | PNNL
Further information:
http://www.pnl.gov/news

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>