Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U-M scientists find genetic ’fountain of youth’ for adult stem cells

23.10.2003


Scientists at the University of Michigan Comprehensive Cancer Center have identified a gene that controls the amazing ability of adult stem cells to self-renew, or make new copies of themselves, throughout life.



In a series of extensive cell culture and animal studies, U-M scientists discovered that a gene called Bmi-1 was required for self-renewal in two types of adult stem cells – neural stem cells from the central nervous system and neural crest stem cells from the peripheral nervous system. In a previous study, other U-M scientists found that Bmi-1 also was necessary for continued self-renewal in a third variety of blood-forming or hematopoietic stem cells.

"So far, we and our colleagues have studied three important types of adult stem cells and Bmi-1 appears to work similarly in every case," says Sean Morrison, Ph.D., an assistant professor of internal medicine in the U-M Medical School and a Howard Hughes Medical Institute investigator. "This raises the intriguing possibility that Bmi-1 could be a universal regulator controlling self-renewal in all adult stem cells."


The U-M study of Bmi-1’s role in central nervous system (CNS) stem cells and neural crest stem cells from the peripheral nervous system (PNS) will be published Oct. 22 in Nature’s advance online edition.

Co-first authors are Anna Molofsky, a student in the M.D./Ph.D. program at the U-M Medical School, and Ricardo Pardal, Ph.D., a U-M research fellow. Previous U-M research on Bmi-1 and hematopoietic stem cells was conducted by In-Kyung Park, Ph.D., research investigator, and Michael F. Clarke, M.D., professor of internal medicine. Results from that study were published in Nature on April 20.

Unlike embryonic stem cells, which exist for a just few days in the early embryo, various types of adult stem cells remain in many tissues throughout life. When adult stem cells divide, they give rise to more stem cells, in addition to mature cells that replace dead or damaged cells in the body. So, the ability of adult stem cells to divide throughout life is necessary for the maintenance of adult tissues.

Most cells in the body are programmed to stop dividing after a limited number of cell divisions, but adult stem cells and cancer cells have the ability to continue making identical copies of themselves for long periods of time, if not indefinitely. Exactly how they do this has remained a mystery – one that scientists all over the world are trying to solve.

"This paper defines one of the mechanisms that make stem cells special," Morrison says. "We now know that Bmi-1 is an important part of the mechanism used by stem cells to persist through adult life. Certainly there are other genes involved and we need much more research to fully understand the process, but Bmi-1 is a major key to unlocking this important mechanism of self-renewal."

Since cancer cells share the secret of self-renewal with adult stem cells, Morrison says his research "raises the possibility that inappropriate activation or over-expression of Bmi-1 in stem cells could lead to uncontrolled growth and cancer."

Morrison and his research team cultured central nervous system stem cells and neural crest stem cells removed from the brain and gut, respectively, of mice that lacked the Bmi-1 gene. They compared the results with cultured stem cells removed from the same locations of normal mice with the Bmi-1 gene.

"Neural stem cells form structures called neurospheres when grown in culture, but Bmi-1-negative mice formed fewer and smaller neurospheres, which produced fewer daughter neurospheres on subcloning," says Molofsky. "This suggested there were fewer stem cells in tissue from the Bmi-1-deficient mice, and that these stem cells were less able to self-renew."

When U-M scientists compared colonies of central nervous system and peripheral nervous system stem cells taken from Bmi-1-negative and Bmi-1-postive mice immediately after birth and 30 days after birth, they found that the effect of Bmi-1 deficiency on stem cells increased over time. By the time they were one-month-old, it was difficult to detech any neural stem cells in either the central or peripheral nervous systems of the Bmi-1-deficient mice.

"This failure of neural stem cells to persist into adulthood closely paralleled the failure of Bmi-1-deficient hematopoietic stem cells to persist into adulthood, as observed by Park and Clarke," Morrison says. "This suggests that Bmi-1 is consistently required for a variety of adult stem cells to persist into adulthood. Bmi-1-deficient mice are smaller than normal mice, and were previously shown by Maarten van Lohuizen at the Netherlands Cancer Institute to die of hematopoietic and neurological abnormalities between one and two months of age."

"Lack of Bmi-1 doesn’t appear to lead to the death of neural stem cells," says Pardal. "Instead it interferes with the cell’s ability to copy itself. So their numbers continue to decline gradually after birth. The differences become more apparent in adulthood. Compared to normal adult mice, Bmi-1-deficient mice have very few neural stem cells left."

Although it had a major impact on the ability of neural stem cells to self-renew, lack of Bmi-1 had no effect on restricted progenitor cells, which are formed by neural stem cells and give rise only to neurons or glia in the central and peripheral nervous systems, respectively.

"Proliferation of these restricted neural progenitor cells appears to be regulated differently in ways that make them independent from Bmi-1," Morrison says. "This is important, because it suggests that, while Bmi-1 is consistently required for the proliferation of many types of stem cells, it is not required for the proliferation of many types of other cells."

When U-M scientists analyzed alterations in gene expression within Bmi-1-deficient neural stem cells, they found that one of the genes, which was consistently expressed at higher levels, was p16(Ink4a) – a gene known to inhibit cell proliferation.

In additional experiments designed to discover the relationship between Bmi-1 and p16(Ink4a), Morrison’s team found that Bmi-1’s ability to suppress expression of p16(Ink4a) in adult stem cells was critical to preserving their ability to self-renew.

"Deleting p16 from the stem cells only partially rescued the ability of neural stem cells to self-renew," Morrison. "This indicates that Bmi-1 likely regulates multiple different pathways that are important for stem cell self-renewal."


The research was funded by the National Institutes of Health, the Searle Scholars Program, the Howard Hughes Medical Institute, the U-M Medical Scholars’ Training Program and the Spanish Ministry of Science and Technology.

In addition to Clarke and Park, Toshihide Iwashita, M.D., Ph.D., a U-M research fellow, also collaborated on the study.

Sally Pobojewski, pobo@umich.edu, 734-615-6912 or
Kara Gavin, kegavin@umich.edu, 734-764-2220

Sally Pobojewski | EurekAlert!
Further information:
http://www.med.umich.edu/1toolbar/whatsnew.htm

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>