Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stowers Institute researchers identify stem cell niche

23.10.2003


A research team led by scientists at the Stowers Institute for Medical Research have discovered the location in mice where hematopoietic stem cells (HSCs) reside, often called the HSCs’ microenvironment or "niche." The team also identified mechanisms involved in controlling the size of the niche and the number of adult HSCs the body produces. This research has solved the puzzle of the hematopoietic stem cell niche first articulated more than 25 years ago and has defined its essential features in both cellular and molecular terms.



The findings are reported in the Oct. 23 issue of Nature.

HSCs are a population of bone marrow cells capable of self-renewal and production of all types of blood cells. Normally these cells cannot function properly outside their exclusive niche. According to Stowers Institute Assistant Investigator Linheng Li, Ph.D., who led the study, the niche not only provides a home for the HSCs but also regulates their numbers. Gaining greater understanding of the stem cell’s niche and its regulatory signals is an important advance toward the goal of using stem cells for therapeutic purposes.


The research team found that a particular subset of osteoblastic cells, called SNO (spindle-shaped N-cadherin-positive osteoblastic) cells, line the surface of trabecular bone in the marrow cavity, support hematopoietic stem cells, and constitute the primary cellular component of the niche where HSCs reside. By interrupting the signaling pathway through the bone morphogenetic protein (BMP) receptor, the team showed that the size of the HSC niche and the number of HSCs could be increased. They concluded that a change in the size of this niche determines the number of stem cells produced, and the BMP signaling pathway controls the niche size and thus the number of stem cells.

"Although we have identified the SNO cells as an important cellular component of the HSC niche, whether SNO cells alone are sufficient to maintain HSCs, particularly in vitro, is not clear at this point," Dr. Li said. "This merits further investigation."

Dr. Li’s findings are corroborated in studies undertaken independently by a group of scientists working at the University of Rochester and at Harvard Medical School and published simultaneously in the October 23 issue of Nature.

"Jim and Virginia Stowers believe that highest quality basic research will point the way to more effective means of preventing and curing disease," said William Neaves, Ph.D., President and CEO of the Stowers Institute. "The work published by Dr. Li and his colleagues in the October 23 issue of Nature typifies the results envisioned by them. His findings open new opportunities for research on the stem cell niche and could eventually lead to more effective methods of restoring stem cells in the bone marrow of cancer patients after radiation and chemotherapy."

Joining Stowers Institute scientists in conducting the study were researchers from the University of Missouri-Kansas City School of Dentistry and the National Institute of Environmental Health Sciences in Research Triangle Park, North Carolina. In addition to his primary appointment at the Stowers Institute, Dr. Li holds a faculty appointment at the University of Kansas School of Medicine.


Situated on a 10-acre campus in the heart of Kansas City, Missouri, the Stowers Institute for Medical Research conducts research on the fundamental processes of cellular life. Through basic research of the highest quality, the Stowers Institute seeks insights that will lead to more effective ways of preserving health and preventing disease. The Institute was founded in 1994 by Jim and Virginia Stowers, two cancer survivors who have dedicated their fortune to supporting the basic research that will provide long-term solutions to gene-based diseases.

Laurie Wimberly | EurekAlert!
Further information:
http://www.stowers-institute.org/

More articles from Life Sciences:

nachricht A room with a view - or how cultural differences matter in room size perception
25.04.2017 | Max-Planck-Institut für biologische Kybernetik

nachricht Studying a catalyst for blood cancers
25.04.2017 | University of Miami Miller School of Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>