Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stowers Institute researchers identify stem cell niche

23.10.2003


A research team led by scientists at the Stowers Institute for Medical Research have discovered the location in mice where hematopoietic stem cells (HSCs) reside, often called the HSCs’ microenvironment or "niche." The team also identified mechanisms involved in controlling the size of the niche and the number of adult HSCs the body produces. This research has solved the puzzle of the hematopoietic stem cell niche first articulated more than 25 years ago and has defined its essential features in both cellular and molecular terms.



The findings are reported in the Oct. 23 issue of Nature.

HSCs are a population of bone marrow cells capable of self-renewal and production of all types of blood cells. Normally these cells cannot function properly outside their exclusive niche. According to Stowers Institute Assistant Investigator Linheng Li, Ph.D., who led the study, the niche not only provides a home for the HSCs but also regulates their numbers. Gaining greater understanding of the stem cell’s niche and its regulatory signals is an important advance toward the goal of using stem cells for therapeutic purposes.


The research team found that a particular subset of osteoblastic cells, called SNO (spindle-shaped N-cadherin-positive osteoblastic) cells, line the surface of trabecular bone in the marrow cavity, support hematopoietic stem cells, and constitute the primary cellular component of the niche where HSCs reside. By interrupting the signaling pathway through the bone morphogenetic protein (BMP) receptor, the team showed that the size of the HSC niche and the number of HSCs could be increased. They concluded that a change in the size of this niche determines the number of stem cells produced, and the BMP signaling pathway controls the niche size and thus the number of stem cells.

"Although we have identified the SNO cells as an important cellular component of the HSC niche, whether SNO cells alone are sufficient to maintain HSCs, particularly in vitro, is not clear at this point," Dr. Li said. "This merits further investigation."

Dr. Li’s findings are corroborated in studies undertaken independently by a group of scientists working at the University of Rochester and at Harvard Medical School and published simultaneously in the October 23 issue of Nature.

"Jim and Virginia Stowers believe that highest quality basic research will point the way to more effective means of preventing and curing disease," said William Neaves, Ph.D., President and CEO of the Stowers Institute. "The work published by Dr. Li and his colleagues in the October 23 issue of Nature typifies the results envisioned by them. His findings open new opportunities for research on the stem cell niche and could eventually lead to more effective methods of restoring stem cells in the bone marrow of cancer patients after radiation and chemotherapy."

Joining Stowers Institute scientists in conducting the study were researchers from the University of Missouri-Kansas City School of Dentistry and the National Institute of Environmental Health Sciences in Research Triangle Park, North Carolina. In addition to his primary appointment at the Stowers Institute, Dr. Li holds a faculty appointment at the University of Kansas School of Medicine.


Situated on a 10-acre campus in the heart of Kansas City, Missouri, the Stowers Institute for Medical Research conducts research on the fundamental processes of cellular life. Through basic research of the highest quality, the Stowers Institute seeks insights that will lead to more effective ways of preserving health and preventing disease. The Institute was founded in 1994 by Jim and Virginia Stowers, two cancer survivors who have dedicated their fortune to supporting the basic research that will provide long-term solutions to gene-based diseases.

Laurie Wimberly | EurekAlert!
Further information:
http://www.stowers-institute.org/

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>