Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stowers Institute researchers identify stem cell niche

23.10.2003


A research team led by scientists at the Stowers Institute for Medical Research have discovered the location in mice where hematopoietic stem cells (HSCs) reside, often called the HSCs’ microenvironment or "niche." The team also identified mechanisms involved in controlling the size of the niche and the number of adult HSCs the body produces. This research has solved the puzzle of the hematopoietic stem cell niche first articulated more than 25 years ago and has defined its essential features in both cellular and molecular terms.



The findings are reported in the Oct. 23 issue of Nature.

HSCs are a population of bone marrow cells capable of self-renewal and production of all types of blood cells. Normally these cells cannot function properly outside their exclusive niche. According to Stowers Institute Assistant Investigator Linheng Li, Ph.D., who led the study, the niche not only provides a home for the HSCs but also regulates their numbers. Gaining greater understanding of the stem cell’s niche and its regulatory signals is an important advance toward the goal of using stem cells for therapeutic purposes.


The research team found that a particular subset of osteoblastic cells, called SNO (spindle-shaped N-cadherin-positive osteoblastic) cells, line the surface of trabecular bone in the marrow cavity, support hematopoietic stem cells, and constitute the primary cellular component of the niche where HSCs reside. By interrupting the signaling pathway through the bone morphogenetic protein (BMP) receptor, the team showed that the size of the HSC niche and the number of HSCs could be increased. They concluded that a change in the size of this niche determines the number of stem cells produced, and the BMP signaling pathway controls the niche size and thus the number of stem cells.

"Although we have identified the SNO cells as an important cellular component of the HSC niche, whether SNO cells alone are sufficient to maintain HSCs, particularly in vitro, is not clear at this point," Dr. Li said. "This merits further investigation."

Dr. Li’s findings are corroborated in studies undertaken independently by a group of scientists working at the University of Rochester and at Harvard Medical School and published simultaneously in the October 23 issue of Nature.

"Jim and Virginia Stowers believe that highest quality basic research will point the way to more effective means of preventing and curing disease," said William Neaves, Ph.D., President and CEO of the Stowers Institute. "The work published by Dr. Li and his colleagues in the October 23 issue of Nature typifies the results envisioned by them. His findings open new opportunities for research on the stem cell niche and could eventually lead to more effective methods of restoring stem cells in the bone marrow of cancer patients after radiation and chemotherapy."

Joining Stowers Institute scientists in conducting the study were researchers from the University of Missouri-Kansas City School of Dentistry and the National Institute of Environmental Health Sciences in Research Triangle Park, North Carolina. In addition to his primary appointment at the Stowers Institute, Dr. Li holds a faculty appointment at the University of Kansas School of Medicine.


Situated on a 10-acre campus in the heart of Kansas City, Missouri, the Stowers Institute for Medical Research conducts research on the fundamental processes of cellular life. Through basic research of the highest quality, the Stowers Institute seeks insights that will lead to more effective ways of preserving health and preventing disease. The Institute was founded in 1994 by Jim and Virginia Stowers, two cancer survivors who have dedicated their fortune to supporting the basic research that will provide long-term solutions to gene-based diseases.

Laurie Wimberly | EurekAlert!
Further information:
http://www.stowers-institute.org/

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>