Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stowers Institute researchers identify stem cell niche

23.10.2003


A research team led by scientists at the Stowers Institute for Medical Research have discovered the location in mice where hematopoietic stem cells (HSCs) reside, often called the HSCs’ microenvironment or "niche." The team also identified mechanisms involved in controlling the size of the niche and the number of adult HSCs the body produces. This research has solved the puzzle of the hematopoietic stem cell niche first articulated more than 25 years ago and has defined its essential features in both cellular and molecular terms.



The findings are reported in the Oct. 23 issue of Nature.

HSCs are a population of bone marrow cells capable of self-renewal and production of all types of blood cells. Normally these cells cannot function properly outside their exclusive niche. According to Stowers Institute Assistant Investigator Linheng Li, Ph.D., who led the study, the niche not only provides a home for the HSCs but also regulates their numbers. Gaining greater understanding of the stem cell’s niche and its regulatory signals is an important advance toward the goal of using stem cells for therapeutic purposes.


The research team found that a particular subset of osteoblastic cells, called SNO (spindle-shaped N-cadherin-positive osteoblastic) cells, line the surface of trabecular bone in the marrow cavity, support hematopoietic stem cells, and constitute the primary cellular component of the niche where HSCs reside. By interrupting the signaling pathway through the bone morphogenetic protein (BMP) receptor, the team showed that the size of the HSC niche and the number of HSCs could be increased. They concluded that a change in the size of this niche determines the number of stem cells produced, and the BMP signaling pathway controls the niche size and thus the number of stem cells.

"Although we have identified the SNO cells as an important cellular component of the HSC niche, whether SNO cells alone are sufficient to maintain HSCs, particularly in vitro, is not clear at this point," Dr. Li said. "This merits further investigation."

Dr. Li’s findings are corroborated in studies undertaken independently by a group of scientists working at the University of Rochester and at Harvard Medical School and published simultaneously in the October 23 issue of Nature.

"Jim and Virginia Stowers believe that highest quality basic research will point the way to more effective means of preventing and curing disease," said William Neaves, Ph.D., President and CEO of the Stowers Institute. "The work published by Dr. Li and his colleagues in the October 23 issue of Nature typifies the results envisioned by them. His findings open new opportunities for research on the stem cell niche and could eventually lead to more effective methods of restoring stem cells in the bone marrow of cancer patients after radiation and chemotherapy."

Joining Stowers Institute scientists in conducting the study were researchers from the University of Missouri-Kansas City School of Dentistry and the National Institute of Environmental Health Sciences in Research Triangle Park, North Carolina. In addition to his primary appointment at the Stowers Institute, Dr. Li holds a faculty appointment at the University of Kansas School of Medicine.


Situated on a 10-acre campus in the heart of Kansas City, Missouri, the Stowers Institute for Medical Research conducts research on the fundamental processes of cellular life. Through basic research of the highest quality, the Stowers Institute seeks insights that will lead to more effective ways of preserving health and preventing disease. The Institute was founded in 1994 by Jim and Virginia Stowers, two cancer survivors who have dedicated their fortune to supporting the basic research that will provide long-term solutions to gene-based diseases.

Laurie Wimberly | EurekAlert!
Further information:
http://www.stowers-institute.org/

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Taming 'wild' electrons in graphene

23.10.2017 | Physics and Astronomy

Mountain glaciers shrinking across the West

23.10.2017 | Earth Sciences

Scientists track ovarian cancers to site of origin: Fallopian tubes

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>