Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The retention of transition metals

20.10.2003


The aim of this PhD is to study the retention of transition metals by humic substances. Transition metals are essential for life but, depending on their concentration in the environment, they can prove to be toxic and provoke serious environmental impact.



Humic substances are, on the other hand, macromolecules arising from the physical, chemical and microbiological transformation (humification) of biomolecules, explains Álvarez Puebla. Their importance is fundamental as they make up the most widespread an ubiquitous source of non-living organic material that nature knows. Approximately 80% of the total carbon in terrestrial media and 60% of the carbon dissolved in aquatic media are made up of humic substances.

Beyond their relevance for life, these substances have industrial applications for making absorbents of metal-poisoned sources. Being natural substances, their purification process is cheaper than the synthesis of any other absorbent and, moreover, due to their high operability, they absorb more than the absorbents used to date such as active charcoals or clays.


Mechanisms of retention

Humic substances have a great capacity for retaining transition metals, forming metalorganic complexes which cause these metals to be more or less available for plants and the plants pas to animals and these to humans.

Thus, Álvarez Puebla proposed a study of how the retention mechanisms operate in order to find out both the capacity and strength of retention a specific humic substance might have; i.e. how this metal-humic substance complex behaves after being subjected to different conditions.

To this end, copper, nickel and cobalt were chosen as all three are in the First Transition Series, are consecutive, are necessary for life, are quite common in industrial effluents, are very used and are very well parameterised for study by means of computer techniques.

Mathematical model for analysis

Álvarez Puebla drew up a mathematical model which enabled an interpretation of the interaction between metals and humic substances. This model considers the global process retention as a series of simple processes and, according to the author, provides good results and reveals a considerable selectivity of humic substances in order to retain the various metallic species as a function of pH and, to a lesser extent, of the concentration of the metal species in the solution.

Also, the theses held by other researchers, which have even been used as a basis for a United States legislative bill, argue that the transition metals may be liberated in alkaline soil, given that an insoluble hydroxide is formed which stays retained in the soil.

However, Álvarez Puebla has shown that humic substances, present in all soils, can mobilise the metal in question because they co-ordinate with it and make it soluble. On the metal mobilising with rain or river water, it can reach subterranean waters and return to the food chain, contaminating the environment.

All this research has been carried out both at a macroscopic level and a microscopic one, by means of various analysis techniques and mathematical and molecular modelling. In this way, the mechanisms of interaction of Co(II), Ni(II) and Cu(II) have been determined in a humic substance complex and its fractions, as a function of the metal concentration and pH of the medium.

Contact :
Iñaki Casado Redin
Nafarroako Unibertsitate Publikoa
inaki.casado@unavarra.es
(+34) 948 16 97 82

Iñaki Casado Redin | Basque research
Further information:
http://www.basqueresearch.com
http://www.unavarra.es

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>