Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic basis for gender differences in the liver

17.10.2003


Scientists at the University of Michigan Medical School have identified two genes responsible for an important, yet often overlooked difference between the sexes.



One of the less evident physiological differences between males and females resides in the liver. Male and female livers express different subsets of genes, which affect the organ’s ability to metabolize certain drugs and hormones. This in turn impacts numerous processes, such as reproduction. While the sexual dimorphism of the liver has been recognized for several decades, scientists are only recently beginning to uncover the genes involved.

In the November 1 issue of Genes & Development, Dr. Diane Robins and colleagues report on their discovery of two neighboring genes, Rsl1 and Rsl2, that repress male-specific liver gene expression in female mice. They found that female mice harboring mutations in Rsl genes aberrantly turn on male-specific liver genes, causing the female livers to adopt characteristically male patterns of gene expression.


According to Dr. Christopher Krebs, first author of the study, "Using genetic tools, we set out to clone Rsl because of its role in establishing gender differences in liver function, particularly in drug metabolism. Instead of just one gene, we discovered a huge cluster of related genes. To our surprise, it takes a pair of these genes to restore normal liver gene expression to mutant mice."

Interestingly, the researchers note that the Rsl genes appear to function through a division of labor, with each regulating a subset of male-specific genes. While these genes appear to share the control of normal hepatic gene expression, under some circumstances one may be able to compensate for defects in the other.

Dr. Robins and colleagues determined that Rsl1 and Rsl2 belong to a large family of structurally related genes, called the KRAB-ZFP gene family, with over 200 members in the mouse and human genomes. Although biochemical work has suggested a role for KRAB-ZFPs in gene silencing, this current study provides the first functional role for any KRAB-ZFP in vivo.

Dr. Robins suggests that these genes may be most interesting from an evolutionary perspective. "This gene family has arisen recently in evolution, and diversified rapidly, but the way they act is highly conserved. Since Rsl regulates genes at puberty that are involved in reproduction and hormone metabolism, it may be that not only Rsl, but also other members of the KRAB-ZFP family, influence functions that lead to speciation."

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>