Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Restricting the gene pool

15.10.2003


Nature has evolved clever ways to prevent animals from different species from successfully reproducing. As published in the upcoming issue of Genes & Development, molecular biologists at UC Irvine are gaining a better understanding as to how.



In the October 15th issue, Drs. Noriko Kamei and Charles Glabe report on the identification of a receptor on the surface of sea urchin eggs that regulates the species-specific adhesion of sperm.

External fertilization can be risky business, especially for marine animals whose sperm is released into an aqueous environment. Thus, there are several barriers to prevent cross-fertilization between different species of sea urchins, or even, say, sea horse sperm from fertilizing sea urchin eggs. The recognition of egg and sperm involves a number of steps (sperm attraction, activation, and adhesion to the egg surface), each of which serves as a checkpoint to restrict the gene pool to individuals of the same species.


Over 25 years ago, scientists discovered that at the tip of sea urchin sperm exists a protein that mediates binding of the sperm to the egg – a protein they named "bindin." Each species of sea urchin has its own unique version of bindin, and scientists hypothesized that each species’ egg must, likewise, have a similarly unique bindin receptor on its surface. Since then, species-specific sperm adhesive proteins and egg receptors have been identified in other animals, including mammals, but the identity of the sea urchin egg bindin receptor has remained elusive. Until now.

Drs. Kamei and Glabe have identified the species-specific sea urchin egg bindin receptor, which they call EBR1 (egg bindin receptor 1). Drs. Kamei and Glabe searched through complementary DNA sequences from ovaries of two different species of sea urchins (S. franciscanus and S. purpuratus, or Sf and Sp, respectively). The scientists were looking for sequences that were present in one species but not the other, and therefore might encode a species-specific protein. Of the four Sf-specific DNA sequences they found, only one was sufficiently large to encode the expected size of the bindin receptor.

Drs. Kamei and Glabe undertook several different experimental approaches to test the validity of this putative bindin receptor, and all roads led to the same conclusion: EBR1 is the long sought after egg bindin receptor. Structural analysis revealed that while Sf-EBR1 and Sp-EBR1 proteins share a conserved core domain, they also have a unique region that accounts for the proteins’ species-specific activity.

"Having the sperm and egg molecules (bindin/EBR1) in hand will allow study at a molecular level of how sperm and egg interact to make fertile offspring. Such insights could provide an understanding of common structural features and functional principals of molecules involved in mammalian gamete interactions. It also may she light on how new species evolved," explains Dr. Kamei.

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>