Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Restricting the gene pool


Nature has evolved clever ways to prevent animals from different species from successfully reproducing. As published in the upcoming issue of Genes & Development, molecular biologists at UC Irvine are gaining a better understanding as to how.

In the October 15th issue, Drs. Noriko Kamei and Charles Glabe report on the identification of a receptor on the surface of sea urchin eggs that regulates the species-specific adhesion of sperm.

External fertilization can be risky business, especially for marine animals whose sperm is released into an aqueous environment. Thus, there are several barriers to prevent cross-fertilization between different species of sea urchins, or even, say, sea horse sperm from fertilizing sea urchin eggs. The recognition of egg and sperm involves a number of steps (sperm attraction, activation, and adhesion to the egg surface), each of which serves as a checkpoint to restrict the gene pool to individuals of the same species.

Over 25 years ago, scientists discovered that at the tip of sea urchin sperm exists a protein that mediates binding of the sperm to the egg – a protein they named "bindin." Each species of sea urchin has its own unique version of bindin, and scientists hypothesized that each species’ egg must, likewise, have a similarly unique bindin receptor on its surface. Since then, species-specific sperm adhesive proteins and egg receptors have been identified in other animals, including mammals, but the identity of the sea urchin egg bindin receptor has remained elusive. Until now.

Drs. Kamei and Glabe have identified the species-specific sea urchin egg bindin receptor, which they call EBR1 (egg bindin receptor 1). Drs. Kamei and Glabe searched through complementary DNA sequences from ovaries of two different species of sea urchins (S. franciscanus and S. purpuratus, or Sf and Sp, respectively). The scientists were looking for sequences that were present in one species but not the other, and therefore might encode a species-specific protein. Of the four Sf-specific DNA sequences they found, only one was sufficiently large to encode the expected size of the bindin receptor.

Drs. Kamei and Glabe undertook several different experimental approaches to test the validity of this putative bindin receptor, and all roads led to the same conclusion: EBR1 is the long sought after egg bindin receptor. Structural analysis revealed that while Sf-EBR1 and Sp-EBR1 proteins share a conserved core domain, they also have a unique region that accounts for the proteins’ species-specific activity.

"Having the sperm and egg molecules (bindin/EBR1) in hand will allow study at a molecular level of how sperm and egg interact to make fertile offspring. Such insights could provide an understanding of common structural features and functional principals of molecules involved in mammalian gamete interactions. It also may she light on how new species evolved," explains Dr. Kamei.

Heather Cosel | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>