Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Genetic switch’ proves two mechanisms exist by which immune system cells differentiate

07.10.2003


The thymus, a once overlooked glandular structure just behind the top of the sternum, has gained increasing attention from scientists in the past two decades because it is where disease-fighting T-cells mature.



Especially in AIDS patients, T-cell count is a relative indicator of the body’s ability to fight disease. Until recently, however, researchers have understood little about how T-cells are generated.

Now, thanks to what a researcher at the University of Georgia calls a "lucky lab accident," a new "genetic switch" involved in T-cell maturation has been discovered. The finding, published today in Nature Immunology, could help find ways to "restart" T-cell production in older adults and victims of disease such as AIDS.


"What this means is that when these cells grow or differentiate, it is a two-stage process," said Dr. Nancy Manley, an assistant professor of genetics at UGA and an adjunct assistant professor at the Medical College of Georgia. "This puts us a step closer to producing important epithelial cells from the thymus in the lab, though we are a long way yet from being able to turn the production of T-cells back on in the human body."

Co-authors on the research paper were Brian Condie and Dong-ming Su of the University of Georgia and Won-jong Oh and Samuel Navarre of the Medical College of Georgia. The work is supported by a grant by the National Institutes of Health.

The primary vehicle for studying T-cell development in the laboratory is the mouse. Researchers have known for years that a gene called nude--which causes mice to grow without hair of any kind--is also involved in immune response. Thus, mice with the nude gene have no T-cells and as a result have virtually no means of fighting off disease unless they are raised and live in germ-free environments.

In what Manley calls a "lucky accident," the team, in trying to produce a mouse with a fluorescent protein under control of the nude gene, came up with something entirely unexpected. The mouse, with the nude gene absent, should have been born completely without hair. Instead, its hair came in and grew normally.

At first, the team though that a mistake had been made--that the gene had simply not been deleted in this mouse. But when they looked at the thymus in these mice, they found, to their surprise, that it was abnormal but still made some T-cells.

Manley instantly knew that the lab mistake was a golden opportunity. It showed for the first time that the role of the nude gene in T-cell production is far more complicated than previously thought.

The specific cells in the thymus required for T-cell maturation are thymic epithelial cells (TECs). In the mutant nude mouse, these TECs fail to grow and mature, so no T-cells are made. But in the mutant made in Manley’s lab, the thymus did produce T-cells, although in greatly reduced numbers.

It turned out that the initiation and progression of TEC growth are genetically separable functions in the new mutant mouse. In addition, the team provided the first genetic evidence that an already-known process called "crosstalk" is needed for the growth of the thymic epithelial cells.

"Normal nude mice never even start to develop T-cells, because the TE cells remain immature," said Manley. "These mutants are now telling us how TE cell differentiation occurs. This is the first nude mutant that can produce partially functional TE cells and as a result can also make some T-cells. Now we have to figure out how it happens."

The practical applications of the research are considerable. The action of the thymus in producing mature disease-fighting T-cells peaks in a person’s mid-teens and then slowly erodes. This is one reason why older people and babies are frequently sickened by or die from diseases that cause little harm to those from their teenage years to midlife.

Likewise, certain diseases can kill off T-cells, making the body vulnerable to a host of infectious diseases, almost as if their bodies had suddenly grown very old. Armed with new evidence about the action of thymic epithelial cells, researchers may one day be able to selectively turn on T-cell production--making numerous disease far less virulent or even extending life.

These results also have further significance in light of recent reports identifying a putative TEC progenitor or "stem" cell. While identification of stem cell populations for specific tissues is a critical step, it is also important to know how to control their growth and development, to allow the production of specific mature cell types in the lab.

"A real problem so far has been that we just can’t make T-cells in the lab," said Manley. "But now at least we have better tools for understanding how they are made in the body, even though the entire process remains unclear. We can say that now we are closer than ever to being able to make thymic epithelial cells in the lab."

With more than 100 of the mutant mice now flourishing in germ-free conditions in Manley’s lab, the work continues

Kim Carlyle | EurekAlert!
Further information:
http://www.uga.edu/

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>