Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Genetic switch’ proves two mechanisms exist by which immune system cells differentiate

07.10.2003


The thymus, a once overlooked glandular structure just behind the top of the sternum, has gained increasing attention from scientists in the past two decades because it is where disease-fighting T-cells mature.



Especially in AIDS patients, T-cell count is a relative indicator of the body’s ability to fight disease. Until recently, however, researchers have understood little about how T-cells are generated.

Now, thanks to what a researcher at the University of Georgia calls a "lucky lab accident," a new "genetic switch" involved in T-cell maturation has been discovered. The finding, published today in Nature Immunology, could help find ways to "restart" T-cell production in older adults and victims of disease such as AIDS.


"What this means is that when these cells grow or differentiate, it is a two-stage process," said Dr. Nancy Manley, an assistant professor of genetics at UGA and an adjunct assistant professor at the Medical College of Georgia. "This puts us a step closer to producing important epithelial cells from the thymus in the lab, though we are a long way yet from being able to turn the production of T-cells back on in the human body."

Co-authors on the research paper were Brian Condie and Dong-ming Su of the University of Georgia and Won-jong Oh and Samuel Navarre of the Medical College of Georgia. The work is supported by a grant by the National Institutes of Health.

The primary vehicle for studying T-cell development in the laboratory is the mouse. Researchers have known for years that a gene called nude--which causes mice to grow without hair of any kind--is also involved in immune response. Thus, mice with the nude gene have no T-cells and as a result have virtually no means of fighting off disease unless they are raised and live in germ-free environments.

In what Manley calls a "lucky accident," the team, in trying to produce a mouse with a fluorescent protein under control of the nude gene, came up with something entirely unexpected. The mouse, with the nude gene absent, should have been born completely without hair. Instead, its hair came in and grew normally.

At first, the team though that a mistake had been made--that the gene had simply not been deleted in this mouse. But when they looked at the thymus in these mice, they found, to their surprise, that it was abnormal but still made some T-cells.

Manley instantly knew that the lab mistake was a golden opportunity. It showed for the first time that the role of the nude gene in T-cell production is far more complicated than previously thought.

The specific cells in the thymus required for T-cell maturation are thymic epithelial cells (TECs). In the mutant nude mouse, these TECs fail to grow and mature, so no T-cells are made. But in the mutant made in Manley’s lab, the thymus did produce T-cells, although in greatly reduced numbers.

It turned out that the initiation and progression of TEC growth are genetically separable functions in the new mutant mouse. In addition, the team provided the first genetic evidence that an already-known process called "crosstalk" is needed for the growth of the thymic epithelial cells.

"Normal nude mice never even start to develop T-cells, because the TE cells remain immature," said Manley. "These mutants are now telling us how TE cell differentiation occurs. This is the first nude mutant that can produce partially functional TE cells and as a result can also make some T-cells. Now we have to figure out how it happens."

The practical applications of the research are considerable. The action of the thymus in producing mature disease-fighting T-cells peaks in a person’s mid-teens and then slowly erodes. This is one reason why older people and babies are frequently sickened by or die from diseases that cause little harm to those from their teenage years to midlife.

Likewise, certain diseases can kill off T-cells, making the body vulnerable to a host of infectious diseases, almost as if their bodies had suddenly grown very old. Armed with new evidence about the action of thymic epithelial cells, researchers may one day be able to selectively turn on T-cell production--making numerous disease far less virulent or even extending life.

These results also have further significance in light of recent reports identifying a putative TEC progenitor or "stem" cell. While identification of stem cell populations for specific tissues is a critical step, it is also important to know how to control their growth and development, to allow the production of specific mature cell types in the lab.

"A real problem so far has been that we just can’t make T-cells in the lab," said Manley. "But now at least we have better tools for understanding how they are made in the body, even though the entire process remains unclear. We can say that now we are closer than ever to being able to make thymic epithelial cells in the lab."

With more than 100 of the mutant mice now flourishing in germ-free conditions in Manley’s lab, the work continues

Kim Carlyle | EurekAlert!
Further information:
http://www.uga.edu/

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>