Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Computer Design Yields Better, More Efficient Therapeutic for Preventing Tissue Damage


The tedious laboratory trial-and-error method for refining protein/peptide-based medicines could be accelerated and complemented by an innovative in silico (on computer) protein design method, according to researchers at Princeton University, the University of Pennsylvania School of Medicine, and the University of California at Riverside.

Their findings, appearing in a recent issue of the Journal of the American Chemical Society, could drastically decrease the time it takes to move potential biopharmaceuticals from the drawing board to the drug store. In this study, the researchers modeled a peptide (a chain of amino acids, such as a protein or protein fragment) called Compstatin, which prevents the autoimmune-mediated damage of organs during transplantation, and various inflammatory diseases. The computer modeling and optimization process cut down on trial and error and created a version of Compstatin seven times more efficient and stable than the original.

Since the function of a peptide depends on its form, the researchers modeled the effects of substituting each of Compstatin’s 13 amino acid subunits with a different amino acid. The novel in silico sequence design method could then model how the altered amino acid sequence folds together in comparison to the original peptide.

"It is a major challenge to design new peptides and proteins that exhibit the desired function such as improved inhibition for the complement system. The challenge centers around the problem of selecting promising sequences from the huge number of possible combinations and making sure those sequences will have the desired three-dimensional structure," said Christodoulos A. Floudas, PhD, a Professor of Chemical Engineering at Princeton University, whose laboratory developed the in silico de novo protein design approach. "At the heart of this innovative technology is a unique two-stage computer protein design method that not only selects and ranks sequences for a particular fold, but also validates the stability and specificity of the fold for these selected sequences."

"It would have taken us months - or even years - to synthesize and screen the 80 quadrillion possible peptide sequences that the protein design program considered," John D. Lambris, PhD, a professor in Penn’s Department of Pathology & Laboratory Medicine and a co-author on the study whose laboratory had discovered Compstatin in 1996. "In the end, we came up with two analogues to Compstatin - each created by altering one amino acid - that performed its job even better than the original protein."

Compstatin works by blocking human complement, the immune system’s passive alarm network that detects pathogens in the blood. Unfortunately, complement can also attack healthy tissue, and a variety of diseases are associated with complement gone awry, such as multiple sclerosis and hemolytic anemia. In addition, complement is thought to play a role in the destruction of cells during strokes, heart attacks, and burn injuries. The complement reaction is actually a series of interlocking cascades, or chain reactions, of biochemical events involving at least 30 proteins. Compstatin works by preventing the activation of C3, a protein that functions at the point where all the complement protein cascades intersect.

The two Compstatin analogues derived from the experiment are superior in their ability to cling to and, hence, prevent the activation of the C3 complement protein. Based on these two analogs, more Compstatin analogs have since been designed, some of which are 200 fold more active that the original Compstatin, according to Lambris. These new Compstatin analogs will be further refined and tested until ready for clinical trials.

To create templates of the desired shape for Compstatin, Dimitrios Morikis, PhD, a researcher at the Department of Chemical and Environmental Engineering of University of California, Riverside, identified the three-dimensional structure of Compstatin in solution via nuclear magnetic resonance (NMR) experiments, which he then computationally refined.

The computational de novo protein design system, developed at Princeton University by Floudas and postdoctoral associate John Klepeis, is a technological advance made possible by (i) a novel mixed-integer optimization model that narrows 200 trillion amino acid sequences into a short list of candidates that are likely to produce a peptide of the desired shape, and (ii) a system called ASTRO-FOLD that, using first-principles, predicts the structures that would be formed by the candidate sequences. The second step confirms and refines the first.

A distributed computing environment consisting of eighty Linux-based computers was used for all the computational predictions, and the predicted new peptides were subsequently synthesized and experimentally validated in the Lambris laboratory at Penn.

Greg Lester | University of Pennsylvania
Further information:

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>