Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer Design Yields Better, More Efficient Therapeutic for Preventing Tissue Damage

26.08.2003


The tedious laboratory trial-and-error method for refining protein/peptide-based medicines could be accelerated and complemented by an innovative in silico (on computer) protein design method, according to researchers at Princeton University, the University of Pennsylvania School of Medicine, and the University of California at Riverside.



Their findings, appearing in a recent issue of the Journal of the American Chemical Society, could drastically decrease the time it takes to move potential biopharmaceuticals from the drawing board to the drug store. In this study, the researchers modeled a peptide (a chain of amino acids, such as a protein or protein fragment) called Compstatin, which prevents the autoimmune-mediated damage of organs during transplantation, and various inflammatory diseases. The computer modeling and optimization process cut down on trial and error and created a version of Compstatin seven times more efficient and stable than the original.

Since the function of a peptide depends on its form, the researchers modeled the effects of substituting each of Compstatin’s 13 amino acid subunits with a different amino acid. The novel in silico sequence design method could then model how the altered amino acid sequence folds together in comparison to the original peptide.


"It is a major challenge to design new peptides and proteins that exhibit the desired function such as improved inhibition for the complement system. The challenge centers around the problem of selecting promising sequences from the huge number of possible combinations and making sure those sequences will have the desired three-dimensional structure," said Christodoulos A. Floudas, PhD, a Professor of Chemical Engineering at Princeton University, whose laboratory developed the in silico de novo protein design approach. "At the heart of this innovative technology is a unique two-stage computer protein design method that not only selects and ranks sequences for a particular fold, but also validates the stability and specificity of the fold for these selected sequences."

"It would have taken us months - or even years - to synthesize and screen the 80 quadrillion possible peptide sequences that the protein design program considered," John D. Lambris, PhD, a professor in Penn’s Department of Pathology & Laboratory Medicine and a co-author on the study whose laboratory had discovered Compstatin in 1996. "In the end, we came up with two analogues to Compstatin - each created by altering one amino acid - that performed its job even better than the original protein."

Compstatin works by blocking human complement, the immune system’s passive alarm network that detects pathogens in the blood. Unfortunately, complement can also attack healthy tissue, and a variety of diseases are associated with complement gone awry, such as multiple sclerosis and hemolytic anemia. In addition, complement is thought to play a role in the destruction of cells during strokes, heart attacks, and burn injuries. The complement reaction is actually a series of interlocking cascades, or chain reactions, of biochemical events involving at least 30 proteins. Compstatin works by preventing the activation of C3, a protein that functions at the point where all the complement protein cascades intersect.

The two Compstatin analogues derived from the experiment are superior in their ability to cling to and, hence, prevent the activation of the C3 complement protein. Based on these two analogs, more Compstatin analogs have since been designed, some of which are 200 fold more active that the original Compstatin, according to Lambris. These new Compstatin analogs will be further refined and tested until ready for clinical trials.

To create templates of the desired shape for Compstatin, Dimitrios Morikis, PhD, a researcher at the Department of Chemical and Environmental Engineering of University of California, Riverside, identified the three-dimensional structure of Compstatin in solution via nuclear magnetic resonance (NMR) experiments, which he then computationally refined.

The computational de novo protein design system, developed at Princeton University by Floudas and postdoctoral associate John Klepeis, is a technological advance made possible by (i) a novel mixed-integer optimization model that narrows 200 trillion amino acid sequences into a short list of candidates that are likely to produce a peptide of the desired shape, and (ii) a system called ASTRO-FOLD that, using first-principles, predicts the structures that would be formed by the candidate sequences. The second step confirms and refines the first.

A distributed computing environment consisting of eighty Linux-based computers was used for all the computational predictions, and the predicted new peptides were subsequently synthesized and experimentally validated in the Lambris laboratory at Penn.

Greg Lester | University of Pennsylvania
Further information:
http://www.uphs.upenn.edu/news/News_Releases/august03/computer.htm

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>