Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New approach to gene knockouts reveals the "master planners" of the skeleton

18.07.2003


Howard Hughes Medical Institute researchers are moving closer to understanding how the global pattern of the skeleton of mammals is formed during development. In an exceptionally demanding series of experiments, the researchers knocked out entire sets of two families of genes suspected in playing a central role in establishing the pattern of the skeleton in the mammalian embryo.

Their findings regarding the "paralogous" gene families known as Hox10 and Hox11 establish that the genes play important roles in orchestrating the construction of the ribs, spine and limb bones. Paralogous genes are sets of genes that have overlapping function. They arose during evolution through gene duplication.

The studies on Hox10 and Hox11 were published in the July 18, 2003, issue of the journal Science by HHMI investigator Mario R. Capecchi and colleague Deneen M. Wellik, who are both at the University of Utah.



According to Capecchi, the findings should also spur other scientists studying genes controlling mammalian development to test the effects of knocking out multiple members of the Hox gene families. Knocking out multiple genes will enable scientists to "peel away" the layers of redundant gene function to more closely discern the true developmental roles of specific members of the Hox gene families.

The 13 sets of Hox genes, each with multiple members, have long been known to be "transcriptional regulators" that control the multitude of genes involved in embryonic development. However, said Capecchi, experiments in which one or another of the Hox genes were knocked out provided little information about the functions of individual Hox genes.

"It was confusing," said Capecchi, referring to results from earlier gene knockouts of Hox10 and Hox11. "When individual genes were knocked out, the resulting animals might have an extra rib or vertebrae or be missing one. And sometimes one structure would transform to look like another or just be misshapen. Even if you inactivated five out of the six genes, you still got very small effects. So, while it was clear these genes were working in the region of the ribs and spine, it wasn´t clear what they were doing."

So, Wellik and Capecchi attempted the difficult task of knocking out all of the Hox10 or Hox11 paralogous gene forms, or alleles. The experiments were particularly challenging because eliminating the genes profoundly affected the embryonic development and survival of the mice. Another complication was that many of the surviving animals were sterile. But when the scientists managed to produce knockout mice that survived to birth with the entire gene sets missing, the effects on development were dramatic.

"When we eliminated all the Hox10 genes, we obtained animals that made ribs essentially all the way from the normal thoracic region down through the tail," he said. "What´s interesting is that this is the body plan of most fish as well as the early tetrapods such as the dinosaurs. However, this plan resulted in an inflexible body, so mammals basically adapted the Hox genes to get rid of some of those ribs to increase flexibility and speed."

When the researchers knocked out the Hox11 genes, the animals´ lower, or sacral, vertebrae assumed the identity of lumbar vertebrae (those between the sacral and the rib-supporting thoracic vertebrae) and no sacral vertebrae developed in the animal.

The researchers also found that knocking out the Hox10 or Hox11 genes affected the length of specific limb bones, demonstrating a role for those genes in patterning of limbs.

"All these results tell us that these genes control global patterning of the skeletal structures, as opposed to forming the structures rib by rib, for example," said Capecchi. "This understanding also suggests an evolutionary pathway by which vertebrates could evolve different patterns for different species."

A major challenge for researchers studying the genetic control of development will be to detect where the panoply of Hox genes are expressed in the growing embryo, said Capecchi. "We´ve demonstrated that the expression patterns of these genes are fairly dynamic," he said. "So, when researchers are looking for expression of specific Hox genes in a given tissue, they might not see them because the genes are expressed only during certain periods of development." Multiple knockout studies such as the ones done on Hox10 and Hox11 may also yield valuable clues into how the genes affect one another, he said.

Future experiments by the researchers, as well as their colleagues studying other Hox genes, may involve knocking out all genes in the individual paralogous Hox gene sets and attempting to discern the roles of those gene sets from observing the alterations in development of the body plan.

"However, my guess is that nature won´t be that kind to us," said Capecchi. "I suspect that sometimes development of a particular structure will involve using members of an entirely different paralogous family. So, our knockouts may have to be much broader than we now believe."

Another major challenge, he said, will be determining which genes the Hox genes target to control development. "In the end, we have to figure out what it means in a molecular sense to make a rib or not to make a rib," said Capecchi. However, he said, the research thus far has yielded important insights.

"Even among mammals, there are enormously different body shapes, from giraffes, to monkeys and humans, to mice. And the take-home lesson from research such as ours is that you can generate all these different body plans using moderately simple rules and the same set of genes, but just modulating them differently.

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>