Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern researchers pinpoint role cell surface protein group plays in brain function

26.06.2003


A specific group of brain proteins is essential to activate communication between neurons, and without this group of proteins all functions of the central nervous system are disrupted, researchers at UT Southwestern Medical Center at Dallas have discovered.


Dr. Thomas Südhof and his collaborators have discovered that a group of specialized proteins, in mice, is essential for communication between neurons. Without this group of proteins, all components of the central nervous system are disrupted



The disruption of this specialized group of proteins, called alpha-Neurexins, causes severe interruption of synaptic transmission, which is essential for neurons to communicate in the central nervous system. Synapses are specialized junctions where neurons communicate with target cells.

The study findings, which were discovered in mice and published in today’s issue of Nature, expand the knowledge of the process of synaptic transmission and gives scientists new insight into how the brain works. Gaining a fundamental understanding of brain function is critical in order to eventually counter the degenerative effects of neurological diseases such as Alzheimer’s and Parkinson’s diseases and schizophrenia, said Dr. Thomas Südhof, director of both the Center for Basic Neuroscience and the C. Vincent Prothro Center for Research in Basic Neuroscience at UT Southwestern and the study’s senior author.


"If you want to have any type of insight on how the brain works
you need to understand synaptic transmission," he said.

"The results from this study were a big surprise," Dr. Südhof said. "When we originally described alpha-Neurexin almost 10 years ago, we hypothesized that the proteins would be involved in signaling the synapses. We thought of it more in terms of the formation of the synapses. The surprise is that it turns out not to be involved in the formation of synapses but what happens subsequently to activate synapses."

To identify the role of these proteins, the researchers used genetically engineered laboratory mice that lacked alpha-Neurexin. The absence of the proteins in the mice resulted in the inactivity of the presynaptic half of the synapses, which is responsible for sending messages to neurons.

This led to an interruption of the mice’s breathing and ultimately death. After examining the nervous system of the mice, the researchers surprisingly found that all components of the nervous system were interrupted.

"The absence of alpha-Neurexin not only interferes with breathing, but it also disrupts all others functions of the nervous system, including perception and motor capabilities," said Dr. Südhof, who holds the Gill Distinguished Chair in Neuroscience Research and the Loyd B. Sands Distinguished Chair in Neuroscience.

Dr. Südhof and his collaborators began the current study almost eight years ago.

"Solving such fundamental questions is paramount in understanding any disease, especially neuronal diseases," said Dr. Südhof, who is also an investigator in the Howard Hughes Medical Institute at UT Southwestern and a member of the National Academy of Sciences.

"I think that the experiences of the last decade or so tell us that any neurological disease that affects the brain requires an understanding of the fundamental mechanisms. You can’t just look at the specific disease. At the most fundamental level, the brain functions by synaptic transmission and this process must be understood first in order to understand neurological diseases."

Other researchers involved in the study include Dr. Robert Hammer, a professor of biochemistry at UT Southwestern; researchers from the Center for Basic Neuroscience at UT Southwestern; and German researchers from Georgia Augusta University in Göttingen and Ruhr University in Buchum.


The study was funded by the National Institutes of Health and the Deutsche Forschungsgemeinschaft.

Amy Shields | EurekAlert!
Further information:
http://www.swmed.edu/
http://lists.utsouthwestern.edu/mailman/listinfo/utswnews

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>