Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern researchers pinpoint role cell surface protein group plays in brain function

26.06.2003


A specific group of brain proteins is essential to activate communication between neurons, and without this group of proteins all functions of the central nervous system are disrupted, researchers at UT Southwestern Medical Center at Dallas have discovered.


Dr. Thomas Südhof and his collaborators have discovered that a group of specialized proteins, in mice, is essential for communication between neurons. Without this group of proteins, all components of the central nervous system are disrupted



The disruption of this specialized group of proteins, called alpha-Neurexins, causes severe interruption of synaptic transmission, which is essential for neurons to communicate in the central nervous system. Synapses are specialized junctions where neurons communicate with target cells.

The study findings, which were discovered in mice and published in today’s issue of Nature, expand the knowledge of the process of synaptic transmission and gives scientists new insight into how the brain works. Gaining a fundamental understanding of brain function is critical in order to eventually counter the degenerative effects of neurological diseases such as Alzheimer’s and Parkinson’s diseases and schizophrenia, said Dr. Thomas Südhof, director of both the Center for Basic Neuroscience and the C. Vincent Prothro Center for Research in Basic Neuroscience at UT Southwestern and the study’s senior author.


"If you want to have any type of insight on how the brain works
you need to understand synaptic transmission," he said.

"The results from this study were a big surprise," Dr. Südhof said. "When we originally described alpha-Neurexin almost 10 years ago, we hypothesized that the proteins would be involved in signaling the synapses. We thought of it more in terms of the formation of the synapses. The surprise is that it turns out not to be involved in the formation of synapses but what happens subsequently to activate synapses."

To identify the role of these proteins, the researchers used genetically engineered laboratory mice that lacked alpha-Neurexin. The absence of the proteins in the mice resulted in the inactivity of the presynaptic half of the synapses, which is responsible for sending messages to neurons.

This led to an interruption of the mice’s breathing and ultimately death. After examining the nervous system of the mice, the researchers surprisingly found that all components of the nervous system were interrupted.

"The absence of alpha-Neurexin not only interferes with breathing, but it also disrupts all others functions of the nervous system, including perception and motor capabilities," said Dr. Südhof, who holds the Gill Distinguished Chair in Neuroscience Research and the Loyd B. Sands Distinguished Chair in Neuroscience.

Dr. Südhof and his collaborators began the current study almost eight years ago.

"Solving such fundamental questions is paramount in understanding any disease, especially neuronal diseases," said Dr. Südhof, who is also an investigator in the Howard Hughes Medical Institute at UT Southwestern and a member of the National Academy of Sciences.

"I think that the experiences of the last decade or so tell us that any neurological disease that affects the brain requires an understanding of the fundamental mechanisms. You can’t just look at the specific disease. At the most fundamental level, the brain functions by synaptic transmission and this process must be understood first in order to understand neurological diseases."

Other researchers involved in the study include Dr. Robert Hammer, a professor of biochemistry at UT Southwestern; researchers from the Center for Basic Neuroscience at UT Southwestern; and German researchers from Georgia Augusta University in Göttingen and Ruhr University in Buchum.


The study was funded by the National Institutes of Health and the Deutsche Forschungsgemeinschaft.

Amy Shields | EurekAlert!
Further information:
http://www.swmed.edu/
http://lists.utsouthwestern.edu/mailman/listinfo/utswnews

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>