Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern researchers pinpoint role cell surface protein group plays in brain function

26.06.2003


A specific group of brain proteins is essential to activate communication between neurons, and without this group of proteins all functions of the central nervous system are disrupted, researchers at UT Southwestern Medical Center at Dallas have discovered.


Dr. Thomas Südhof and his collaborators have discovered that a group of specialized proteins, in mice, is essential for communication between neurons. Without this group of proteins, all components of the central nervous system are disrupted



The disruption of this specialized group of proteins, called alpha-Neurexins, causes severe interruption of synaptic transmission, which is essential for neurons to communicate in the central nervous system. Synapses are specialized junctions where neurons communicate with target cells.

The study findings, which were discovered in mice and published in today’s issue of Nature, expand the knowledge of the process of synaptic transmission and gives scientists new insight into how the brain works. Gaining a fundamental understanding of brain function is critical in order to eventually counter the degenerative effects of neurological diseases such as Alzheimer’s and Parkinson’s diseases and schizophrenia, said Dr. Thomas Südhof, director of both the Center for Basic Neuroscience and the C. Vincent Prothro Center for Research in Basic Neuroscience at UT Southwestern and the study’s senior author.


"If you want to have any type of insight on how the brain works
you need to understand synaptic transmission," he said.

"The results from this study were a big surprise," Dr. Südhof said. "When we originally described alpha-Neurexin almost 10 years ago, we hypothesized that the proteins would be involved in signaling the synapses. We thought of it more in terms of the formation of the synapses. The surprise is that it turns out not to be involved in the formation of synapses but what happens subsequently to activate synapses."

To identify the role of these proteins, the researchers used genetically engineered laboratory mice that lacked alpha-Neurexin. The absence of the proteins in the mice resulted in the inactivity of the presynaptic half of the synapses, which is responsible for sending messages to neurons.

This led to an interruption of the mice’s breathing and ultimately death. After examining the nervous system of the mice, the researchers surprisingly found that all components of the nervous system were interrupted.

"The absence of alpha-Neurexin not only interferes with breathing, but it also disrupts all others functions of the nervous system, including perception and motor capabilities," said Dr. Südhof, who holds the Gill Distinguished Chair in Neuroscience Research and the Loyd B. Sands Distinguished Chair in Neuroscience.

Dr. Südhof and his collaborators began the current study almost eight years ago.

"Solving such fundamental questions is paramount in understanding any disease, especially neuronal diseases," said Dr. Südhof, who is also an investigator in the Howard Hughes Medical Institute at UT Southwestern and a member of the National Academy of Sciences.

"I think that the experiences of the last decade or so tell us that any neurological disease that affects the brain requires an understanding of the fundamental mechanisms. You can’t just look at the specific disease. At the most fundamental level, the brain functions by synaptic transmission and this process must be understood first in order to understand neurological diseases."

Other researchers involved in the study include Dr. Robert Hammer, a professor of biochemistry at UT Southwestern; researchers from the Center for Basic Neuroscience at UT Southwestern; and German researchers from Georgia Augusta University in Göttingen and Ruhr University in Buchum.


The study was funded by the National Institutes of Health and the Deutsche Forschungsgemeinschaft.

Amy Shields | EurekAlert!
Further information:
http://www.swmed.edu/
http://lists.utsouthwestern.edu/mailman/listinfo/utswnews

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Energy-Efficient Building Operation: Monitoring Platform MONDAS Identifies Energy-Saving Potential

16.01.2017 | Trade Fair News

Designing Architecture with Solar Building Envelopes

16.01.2017 | Architecture and Construction

Sensory Stimuli Control Dopamine in the Brain

13.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>