Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene may produce drought-resistant plants

22.05.2003


The identification and duplication of a gene that controls production of plants’ outermost protective coating may allow Purdue University researchers to create crops with increased drought resistance.


Research conducted at Purdue University by Matt Jenks with Arabidopsis plants may lead to the development of more drought-resistant plants. Jenks is an assistant professor of horticulture. (Purdue Agricultural Communication photo/Tom Campbell)



Scientists cloned the gene WAX2 after they discovered a fast-wilting mutant of Arabidopsis, a commonly used experimental plant. The gene is directly associated with the synthesis of the protective layer of plants, called the cuticle, and its contained waxes, according to the study published in the May issue of The Plant Cell.

The difference in the mutant Arabidopsis when compared to a wild-type, or normal, plant is the plants’ ability to retain water. This is apparently because the mutation, called wax2, has a different cuticle structure than found in a plant that has the normal gene, WAX2.


"If we can alter the expression of the WAX2 gene, we might be able to produce a cuticle that is thicker or more rigid so that it’s less permeable to water loss," said Matt Jenks, associate professor of horticulture and landscape architecture.

Manipulating what the gene does or when it is turned on could result in plants better able to survive in arid conditions.

Jenks and his research team isolated more than 20 mutant Arabidopsis plants that showed alterations in the amount of wax they produced. Of these, only a few lost water more quickly than the wild type.

"The mutant wax2 was the most drought susceptible," Jenks said. "Unlike previously described wax mutants, removal of the WAX2 gene product causes dramatic alteration in the cuticle membrane, and the plant no longer is able to prevent water loss."

Jenks said he believes that when the cuticle membrane structure is changed because of the wax2 malfunction of the WAX2 gene, the protective wax within the cuticle membrane is displaced, affecting transpiration. Transpiration is how plants emit waste matter though their leaf surfaces.

"It’s likely that the cuticle meshwork is disrupted so the wax molecules no longer stack properly within the cuticle," he said. "The plant becomes very permeable to water and overall is less able to withstand drought conditions."

The study using the mutant wax2 also revealed unique interactions between the cuticle and other aspects of plant development.

The researchers found that the wax2 mutant has fewer stomata, the small holes in the plant’s surface that regulate water loss. This mutant also has a male sterility problem that prevents pollen from activating the stigma, where reproduction begins.

"The cloning of WAX2 is providing evidence that lipids in the cuticle may serve as signals that control how plants develop," Jenks said. "Lipids in animals are known to play important roles in regulating development, but lipid signaling in plants is not well understood."

Lipids are water-insoluble molecules that aid in various cell metabolic functions.

"We want to understand the genetics and biochemistry of plant cuticle production so that ultimately we may be able to modify economically important crops to grow better during drought" he said.

The other authors of the study are postdoctoral student Xinbo Chen, visiting professor Xionglun Liu, and graduate students S. Mark Goodwin and Virginia Boroff, all of the Purdue Department of Horticulture and Landscape Architecture.

The U.S. Department of Agriculture National Research Initiative and Purdue University provided support for the research.

Writer: Susan A. Steeves, (765) 496-7481, ssteeves@aes.purdue.edu

Source: Matthew Jenks, (765) 494-1332, jenks@hort.purdue.edu

Ag Communications: (765) 494-2722; Beth Forbes, bforbes@aes.purdue.edu;

Susan A. Steeves | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/030521.Jenks.wax2.html
http://www.agriculture.purdue.edu/AgComm/public/agnews/
http://www.hort.purdue.edu/

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>