Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic regulator of lifespan identified

08.05.2003


May explain life extension via calorie restriction



Researchers at Harvard Medical School (HMS) have discovered that a gene in yeast is a key regulator of lifespan. The gene, PNC1, is the first that has been shown to respond specifically to environmental factors known to affect lifespan in many organisms. A team led by David Sinclair, assistant professor of pathology at HMS, found that PNC1 is required for the lifespan extension that yeast experience under calorie restriction. A yeast strain with five copies of PNC1 lives 70 percent longer than the wild type strain, the longest lifespan extension yet reported in that organism. Their findings are reported in the May 8 Nature.

The PNC1 protein regulates nicotinamide, a form of vitamin B3. Sinclair’s group previously found that nicotinamide acts as an inhibitor of Sir2, the founding member of a family of proteins that control cell survival and lifespan. Sir2 extends lifespan in yeast by keeping ribosomal DNA stable. PNC1 converts nicotinamide into nicotinic acid, a molecule that does not affect lifespan. In doing so, it keeps nicotinamide from inhibiting Sir2, allowing the yeast to live longer.


The finding implies that lifespan is not simply dependent on accumulated wear and tear or metabolism, as some researchers have suggested, but is at least partly controlled by an active genetic program in cells--one that could theoretically be boosted. "In contrast to the current model, we show that the lifespan extension from calorie restriction is the result of an active cellular defense involving the upregulation of a specific gene," Sinclair said.

For decades researchers have known that severe calorie restriction extends the lives of many organisms like yeast, fruit flies, worms, and rats, and it also slows the aging process and prevents cancer in rats. But why less food seems to help organisms live longer has been puzzling. While Sir2 is a necessary part of the equation, calorie restriction does not affect Sir2 levels, indicating that Sir2 must be regulated by another protein that does respond to calorie restriction.

Some researchers have speculated that NAD, a cofactor of Sir2 and a common metabolite in the cell, acts as a regulatory mechanism. Because NAD levels vary with rates of metabolism in yeast, this model suggests that calorie restriction might lengthen lifespan by lowering metabolism. However, Sinclair’s group showed that the effect of PNC1 was independent of NAD availability. They believe that the real regulator of Sir2 is nicotinamide, which is one of the products of the reaction between Sir2 and NAD.

PNC1 levels are highly sensitive to environmental cues like calorie restriction, low salt, and heat that are known to make yeast live longer. Sinclair’s team believes that the PNC1/nicotinamide pathway provides a genetic link between the environment of an organism and its lifespan, allowing an organism to actively change its survival strategies according to the level of environmental stress it senses.

In humans, the picture is undoubtedly more complicated; for one, humans have seven Sir genes, not just Sir2. The nicotinamide pathway is also different in humans, but Sinclair’s group has shown that nicotinamide inhibits human SIRT1, a homologue of Sir2. His group is now investigating human genes that may play the same role as PNC1.

One of the immediate implications of the work is that it emphasizes the functional difference between nicotinamide and nicotinic acid. Nicotinic acid (niacin) is a known anticholesterol treatment, while nicotinamide (or niacinimide) is sometimes touted for anti-aging abilities and is in clinical trials as a therapy for diabetes and cancer. However, the two substances are sometimes sold interchangeably as supplements under the name vitamin B3. "Our study raises the concern of taking high doses of nicotinamide," Sinclair said, because nicotinamide puts a damper on Sir2’s actions in the cell.


This research was supported by grants from the National Institute on Aging and the Harvard-Armenise Foundation. Fellowships were supported by the Ellison Medical Research Foundation, John Taplan Posdoctoral Fellowship Program, National Science Foundation Scholarship Program, and the American Federation of Aging Research.

Harvard Medical School has more than 5,000 full-time faculty working in eight academic departments based at the School’s Boston quadrangle or in one of 47 academic departments at 17 affiliated teaching hospitals and research institutes. Those HMS affiliated institutions include Beth Israel Deaconess Medical Center, Brigham and Women’s Hospital, Cambridge Hospital, Center for Blood Research, Children’s Hospital, Dana-Farber Cancer Institute, Harvard Pilgrim Health Care, Joslin Diabetes Center, Judge Baker Children’s Center, Massachusetts Eye and Ear Infirmary, Massachusetts General Hospital, Massachusetts Mental Health Center, McLean Hospital, Mount Auburn Hospital, Schepens Eye Research Institute, Spaulding Rehabilitation Hospital, VA Boston Healthcare System.

Contact: John Lacey, 617-432-0442, (public_affairs@hms.harvard.edu)
Courtney Humphries, 617-432-0442, (public_affairs@hms.harvard.edu)


John Lacey | EurekAlert!
Further information:
http://www.hms.harvard.edu/

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>