Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Roadsigns for Rodents: Creation of signposts detected in the first non-human species

29.04.2003


Humans are not alone in creating ‘signposts’ to help them find their way, according to new research published in the open access journal BMC Ecology. Wood mice, say scientists, move objects from their environment around using them as portable signposts whilst they explore.

The finding is significant as this is the first time such sophisticated behaviour has been identified in any mammal except humans. According to the authors,

“This is precisely how a human might tackle the problem of searching efficiently in a homogeneous environment – for example by placing a cane in the ground as a reference point from which to search for a set of keys dropped on a lawn.”



Quick, effective navigation is vital for the wood mouse. Home-ranges are vast in comparison to the mammal’s size and consist of uniform areas, like ploughed fields, without obvious landmarks. These environments are not the same all year round, and harvest time drastically changes the availability of any ‘fixed’ landmarks, food supplies and hiding places.

During field observations, Pavel Stopka and David Macdonald from the Department of Zoology at the University of Oxford noticed that wood mice move piles of seed shells, leaves and other small objects as they explore. They observed that the mice are most active around these piles and frequently return to them.

Stopka and Macdonald brought wild mice into a controlled environment to see if they were using these items as ‘portable signposts’. Ten groups of 4 male and 4 female mice were put into special arenas with a nest box, food supply and bedding, and given 10, 5cm diameter white discs.

Mice were videoed constantly for 15 days, and their movements analysed. Activity around the nest box tended to consist only of short, local meanderings not based upon the location of the nest. Movement around the discs, however, involved longer journeys associated with exploratory behaviour. This behaviour was observed in both males and females.

When a mouse found an area it was interested in, it would collect a white disc and move it there. The mouse would then continue to explore, its movements focused on the disc’s location. Stopka and Macdonald observed that the mice would continually return to or ‘look for’ the disc – apparently using it to orient themselves. Once the mouse had finished searching a particular area and identified a new point of interest, it would pick up the disc, move it to the new area and repeat the exploration, again using the disc for orientation.

The discs also served as ‘book marks’ for when activity was interrupted. If a predator were detected, the mice would retreat to shelter. Once the threat was over, the mice returned to the disc.

Stopka and Macdonald hypothesise that these signposts are more effective for wood mice than scent marks: they can be moved at any time and are not detectable by predators.

For further information please contact Grace Baynes (press@biomedcentral.com or Tel: +44 20 7631 2988).

Grace Baynes | BioMed Central Limited
Further information:
http://www.biomedcentral.com/content/pdf/1472-6785-3-3.pdf

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>