Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeking comfort from the cold

11.04.2003


Scientists at the University of Arizona have discovered a critical cold-tolerance gene in Arabidopsis. As published in the April 15th issue of Genes & Development, the identification of ICE1 by Dr. Jian-Kang Zhu and colleagues holds promising implications for the improvement of cold tolerance in agriculturally important crops.



Cold temperature is one of the major factors affecting crop yield in temperate climates, with the farming industry loosing billions of dollars each year to freezing temperatures. Much research has focused on ways to improve crops’ tolerance to cold and/or freezing temperatures, with the aim to both increase productivity and broaden geographical range.

In 1988, scientists identified the Arabidopsis CBF family of transcription factors. CBF proteins regulate the expression of cold-responsive genes in Arabidopsis, which enable the plant to acclimate to, and survive in, cold temperatures.


As reported in their current G&D paper, Dr. Zhu and colleagues have now discovered a key transcriptional regulator of CBF genes – a marked advance in the research effort to understand and ultimately improve cold tolerance in plants.

To identify genes act upon CBF genes and affect cold tolerance in plants, Dr. Zhu and colleagues carried out a genetic screen with Arabidopsis plants that were genetically engineered to glow in the cold. The researchers inserted a luciferase/CBF3 transgene (a recombinant DNA molecule containing the firefly luciferase gene under the control of the CBF3 gene regulatory region) into the Arabidopsis genome, in order to generate plants that bioluminesce under cold stress. These cold-responsive bioluminescent plants were mutagenized, and plants that no longer glowed in cold temperatures were selected.

One particularly striking mutant exhibited ten times less luminescence after 12 hours at 0ºC than the wild-type bioluminescent plants. Dr. Zhu and colleagues cloned the gene that had been mutated in this plant, and named it ICE1 (inducer of CBF expression). Further research by the group revealed that ICE1 is also a transcription factor: During periods of cold stress, ICE1 binds to and turns on the CBF3 gene, which, in turn, induces the expression of cold-responsive genes. Using microarray analysis, Dr. Zhu and colleagues demonstrated that in ICE1-mutant plants, over 70% of cold-responsive genes are misregulated, causing the plants to exhibit severely reduced cold tolerance.

Dr. Zhu and colleagues also demonstrated that the increased expression of ICE1 in Arabidopsis plants leads to increased cold tolerance. This result is expected to garner significant attention from the agricultural community, as the transgenic expression of ICE1 in domesticated, cold-sensitive crops -- like soybeans, tomatoes, potatoes, rice and barley – may provide a new way to increase the ability of such plants to survive in the cold.

As Dr. Zhu explains, "The significance of our findings on ICE1 may be two-fold: It is likely useful for the genetic improvement of plant freezing tolerance, and the identification of ICE1 takes us one step closer to address the question how cold signals are sensed and transduced."

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>