Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeking comfort from the cold

11.04.2003


Scientists at the University of Arizona have discovered a critical cold-tolerance gene in Arabidopsis. As published in the April 15th issue of Genes & Development, the identification of ICE1 by Dr. Jian-Kang Zhu and colleagues holds promising implications for the improvement of cold tolerance in agriculturally important crops.



Cold temperature is one of the major factors affecting crop yield in temperate climates, with the farming industry loosing billions of dollars each year to freezing temperatures. Much research has focused on ways to improve crops’ tolerance to cold and/or freezing temperatures, with the aim to both increase productivity and broaden geographical range.

In 1988, scientists identified the Arabidopsis CBF family of transcription factors. CBF proteins regulate the expression of cold-responsive genes in Arabidopsis, which enable the plant to acclimate to, and survive in, cold temperatures.


As reported in their current G&D paper, Dr. Zhu and colleagues have now discovered a key transcriptional regulator of CBF genes – a marked advance in the research effort to understand and ultimately improve cold tolerance in plants.

To identify genes act upon CBF genes and affect cold tolerance in plants, Dr. Zhu and colleagues carried out a genetic screen with Arabidopsis plants that were genetically engineered to glow in the cold. The researchers inserted a luciferase/CBF3 transgene (a recombinant DNA molecule containing the firefly luciferase gene under the control of the CBF3 gene regulatory region) into the Arabidopsis genome, in order to generate plants that bioluminesce under cold stress. These cold-responsive bioluminescent plants were mutagenized, and plants that no longer glowed in cold temperatures were selected.

One particularly striking mutant exhibited ten times less luminescence after 12 hours at 0ºC than the wild-type bioluminescent plants. Dr. Zhu and colleagues cloned the gene that had been mutated in this plant, and named it ICE1 (inducer of CBF expression). Further research by the group revealed that ICE1 is also a transcription factor: During periods of cold stress, ICE1 binds to and turns on the CBF3 gene, which, in turn, induces the expression of cold-responsive genes. Using microarray analysis, Dr. Zhu and colleagues demonstrated that in ICE1-mutant plants, over 70% of cold-responsive genes are misregulated, causing the plants to exhibit severely reduced cold tolerance.

Dr. Zhu and colleagues also demonstrated that the increased expression of ICE1 in Arabidopsis plants leads to increased cold tolerance. This result is expected to garner significant attention from the agricultural community, as the transgenic expression of ICE1 in domesticated, cold-sensitive crops -- like soybeans, tomatoes, potatoes, rice and barley – may provide a new way to increase the ability of such plants to survive in the cold.

As Dr. Zhu explains, "The significance of our findings on ICE1 may be two-fold: It is likely useful for the genetic improvement of plant freezing tolerance, and the identification of ICE1 takes us one step closer to address the question how cold signals are sensed and transduced."

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>