Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeking comfort from the cold

11.04.2003


Scientists at the University of Arizona have discovered a critical cold-tolerance gene in Arabidopsis. As published in the April 15th issue of Genes & Development, the identification of ICE1 by Dr. Jian-Kang Zhu and colleagues holds promising implications for the improvement of cold tolerance in agriculturally important crops.



Cold temperature is one of the major factors affecting crop yield in temperate climates, with the farming industry loosing billions of dollars each year to freezing temperatures. Much research has focused on ways to improve crops’ tolerance to cold and/or freezing temperatures, with the aim to both increase productivity and broaden geographical range.

In 1988, scientists identified the Arabidopsis CBF family of transcription factors. CBF proteins regulate the expression of cold-responsive genes in Arabidopsis, which enable the plant to acclimate to, and survive in, cold temperatures.


As reported in their current G&D paper, Dr. Zhu and colleagues have now discovered a key transcriptional regulator of CBF genes – a marked advance in the research effort to understand and ultimately improve cold tolerance in plants.

To identify genes act upon CBF genes and affect cold tolerance in plants, Dr. Zhu and colleagues carried out a genetic screen with Arabidopsis plants that were genetically engineered to glow in the cold. The researchers inserted a luciferase/CBF3 transgene (a recombinant DNA molecule containing the firefly luciferase gene under the control of the CBF3 gene regulatory region) into the Arabidopsis genome, in order to generate plants that bioluminesce under cold stress. These cold-responsive bioluminescent plants were mutagenized, and plants that no longer glowed in cold temperatures were selected.

One particularly striking mutant exhibited ten times less luminescence after 12 hours at 0ºC than the wild-type bioluminescent plants. Dr. Zhu and colleagues cloned the gene that had been mutated in this plant, and named it ICE1 (inducer of CBF expression). Further research by the group revealed that ICE1 is also a transcription factor: During periods of cold stress, ICE1 binds to and turns on the CBF3 gene, which, in turn, induces the expression of cold-responsive genes. Using microarray analysis, Dr. Zhu and colleagues demonstrated that in ICE1-mutant plants, over 70% of cold-responsive genes are misregulated, causing the plants to exhibit severely reduced cold tolerance.

Dr. Zhu and colleagues also demonstrated that the increased expression of ICE1 in Arabidopsis plants leads to increased cold tolerance. This result is expected to garner significant attention from the agricultural community, as the transgenic expression of ICE1 in domesticated, cold-sensitive crops -- like soybeans, tomatoes, potatoes, rice and barley – may provide a new way to increase the ability of such plants to survive in the cold.

As Dr. Zhu explains, "The significance of our findings on ICE1 may be two-fold: It is likely useful for the genetic improvement of plant freezing tolerance, and the identification of ICE1 takes us one step closer to address the question how cold signals are sensed and transduced."

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>