Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inspired by nature, Cornell chemist finds way to make biodegradable plastic that imitates bacteria

24.03.2003


Finding an economical way to make a polyester commonly found in many types of bacteria into a plastic with uses ranging from packaging to biomedical devices is a long-held scientific goal. Such a polymer would be a "green" plastic, in that it would be biodegradable.

Geoffrey Coates, a professor of chemistry and chemical biology at Cornell University, Ithaca, N.Y., has partially achieved this goal by discovering a highly efficient chemical route for the synthesis of the polymer, known as poly(beta-hydroxybutyrate) or PHB. The thermoplastic polyester is widely found in nature, particularly in some bacteria, where it is formed as intracellular deposits and used as a storage form of carbon and energy. And yet it shares many of the physical and mechanical properties of petroleum-based polypropylene, with the added benefit of being biodegradable.

Coates reported on his research group’s work with PHB in the first of two papers presented at the 225th national meeting of the American Chemical Society in New Orleans at 3:30 p.m. CST Sunday, March 23.



PHB currently is produced through a costly, energy-intensive biological process involving the fermentation of sugar. However, the Coates group’s chemical route, once perfected, "is going to be a competitive strategy," the Cornell researcher believes.

In order to produce the polymer, the process first requires a monomer, in this case a lactone called beta-butyrolactone. This reacts with a zinc complex catalyst, discovered by Coates in the late 1990s, to make PHB.

The problem faced by the Coates group has been that beta-butyrolactone is a "handed" molecule, that is, it has two mirror images, like hands. Polymers produced from a mixture of two-handed forms have very poor properties. The researchers have been focusing on the development of a new catalyst for the production of the desired single-handed form of beta-butyrolactone, a process called carbonylation. The new catalyst, based on cobalt and aluminum, facilitates the addition of carbon monoxide to propylene oxide, an inexpensive ring compound called an epoxide. By using the commercially available handed form of propylene oxide in the reaction, the corresponding handed form of the lactone can be formed rapidly.

Coates is convinced that, "our carbonylation and polymerization processes are, in our opinion, the best." He adds, "A purely chemical route to a polymer that occurs in nature and is easily biodegradable is highly desirable."

Members of the Coates group at Cornell involved in the research include Yutan Getzler, Lee Rieth and Vinod Kundnani, all Ph.D. candidates, and postdoctoral associate Joseph Schmidt. The work was supported by the National Science Foundation, the Arnold and Mabel Beckman Foundation, the David and Lucile Packard Foundation, the Nanobiotechnology Center at Cornell and the Cornell Center for Materials Research.

David Brand | Cornell University
Further information:
http://www.chem.cornell.edu/department/Faculty/Coates/coates.html
http://www.news.cornell.edu/releases/March03/ACS.Coates.deb.html

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>