Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inspired by nature, Cornell chemist finds way to make biodegradable plastic that imitates bacteria

24.03.2003


Finding an economical way to make a polyester commonly found in many types of bacteria into a plastic with uses ranging from packaging to biomedical devices is a long-held scientific goal. Such a polymer would be a "green" plastic, in that it would be biodegradable.

Geoffrey Coates, a professor of chemistry and chemical biology at Cornell University, Ithaca, N.Y., has partially achieved this goal by discovering a highly efficient chemical route for the synthesis of the polymer, known as poly(beta-hydroxybutyrate) or PHB. The thermoplastic polyester is widely found in nature, particularly in some bacteria, where it is formed as intracellular deposits and used as a storage form of carbon and energy. And yet it shares many of the physical and mechanical properties of petroleum-based polypropylene, with the added benefit of being biodegradable.

Coates reported on his research group’s work with PHB in the first of two papers presented at the 225th national meeting of the American Chemical Society in New Orleans at 3:30 p.m. CST Sunday, March 23.



PHB currently is produced through a costly, energy-intensive biological process involving the fermentation of sugar. However, the Coates group’s chemical route, once perfected, "is going to be a competitive strategy," the Cornell researcher believes.

In order to produce the polymer, the process first requires a monomer, in this case a lactone called beta-butyrolactone. This reacts with a zinc complex catalyst, discovered by Coates in the late 1990s, to make PHB.

The problem faced by the Coates group has been that beta-butyrolactone is a "handed" molecule, that is, it has two mirror images, like hands. Polymers produced from a mixture of two-handed forms have very poor properties. The researchers have been focusing on the development of a new catalyst for the production of the desired single-handed form of beta-butyrolactone, a process called carbonylation. The new catalyst, based on cobalt and aluminum, facilitates the addition of carbon monoxide to propylene oxide, an inexpensive ring compound called an epoxide. By using the commercially available handed form of propylene oxide in the reaction, the corresponding handed form of the lactone can be formed rapidly.

Coates is convinced that, "our carbonylation and polymerization processes are, in our opinion, the best." He adds, "A purely chemical route to a polymer that occurs in nature and is easily biodegradable is highly desirable."

Members of the Coates group at Cornell involved in the research include Yutan Getzler, Lee Rieth and Vinod Kundnani, all Ph.D. candidates, and postdoctoral associate Joseph Schmidt. The work was supported by the National Science Foundation, the Arnold and Mabel Beckman Foundation, the David and Lucile Packard Foundation, the Nanobiotechnology Center at Cornell and the Cornell Center for Materials Research.

David Brand | Cornell University
Further information:
http://www.chem.cornell.edu/department/Faculty/Coates/coates.html
http://www.news.cornell.edu/releases/March03/ACS.Coates.deb.html

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>