Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inspired by nature, Cornell chemist finds way to make biodegradable plastic that imitates bacteria

24.03.2003


Finding an economical way to make a polyester commonly found in many types of bacteria into a plastic with uses ranging from packaging to biomedical devices is a long-held scientific goal. Such a polymer would be a "green" plastic, in that it would be biodegradable.

Geoffrey Coates, a professor of chemistry and chemical biology at Cornell University, Ithaca, N.Y., has partially achieved this goal by discovering a highly efficient chemical route for the synthesis of the polymer, known as poly(beta-hydroxybutyrate) or PHB. The thermoplastic polyester is widely found in nature, particularly in some bacteria, where it is formed as intracellular deposits and used as a storage form of carbon and energy. And yet it shares many of the physical and mechanical properties of petroleum-based polypropylene, with the added benefit of being biodegradable.

Coates reported on his research group’s work with PHB in the first of two papers presented at the 225th national meeting of the American Chemical Society in New Orleans at 3:30 p.m. CST Sunday, March 23.



PHB currently is produced through a costly, energy-intensive biological process involving the fermentation of sugar. However, the Coates group’s chemical route, once perfected, "is going to be a competitive strategy," the Cornell researcher believes.

In order to produce the polymer, the process first requires a monomer, in this case a lactone called beta-butyrolactone. This reacts with a zinc complex catalyst, discovered by Coates in the late 1990s, to make PHB.

The problem faced by the Coates group has been that beta-butyrolactone is a "handed" molecule, that is, it has two mirror images, like hands. Polymers produced from a mixture of two-handed forms have very poor properties. The researchers have been focusing on the development of a new catalyst for the production of the desired single-handed form of beta-butyrolactone, a process called carbonylation. The new catalyst, based on cobalt and aluminum, facilitates the addition of carbon monoxide to propylene oxide, an inexpensive ring compound called an epoxide. By using the commercially available handed form of propylene oxide in the reaction, the corresponding handed form of the lactone can be formed rapidly.

Coates is convinced that, "our carbonylation and polymerization processes are, in our opinion, the best." He adds, "A purely chemical route to a polymer that occurs in nature and is easily biodegradable is highly desirable."

Members of the Coates group at Cornell involved in the research include Yutan Getzler, Lee Rieth and Vinod Kundnani, all Ph.D. candidates, and postdoctoral associate Joseph Schmidt. The work was supported by the National Science Foundation, the Arnold and Mabel Beckman Foundation, the David and Lucile Packard Foundation, the Nanobiotechnology Center at Cornell and the Cornell Center for Materials Research.

David Brand | Cornell University
Further information:
http://www.chem.cornell.edu/department/Faculty/Coates/coates.html
http://www.news.cornell.edu/releases/March03/ACS.Coates.deb.html

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>