Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hares Fell Trees

29.01.2003


It seems that biologists know everything about the Alpine hare (Lepus timidus), particularly about its ration. However, the Yakut scientists, Anatoly Pshennikov and Vladimir Pozdnyakov have discovered a previously unknown method the hares employ in wintertime when they suffer from the lack of food.

Forage is scarce in winter in Yakutia. The Alpine hares are content to feed on bushes and young trees. If the distance between the ground and a thin twig is less than a meter, the hare bites it off. This is the best food the hare can count on in wintertime. Thin sprouts make quick and substantial food for hares (1 gram of forage per 40-45 seconds). When there are no twigs available within their reach, the hares make a ’ring’ on the tree, gnawing the rind and bast round the trunk. Sometimes a thin tree fails to stand it and falls down, and then the hare gets tasty twigs. If young trees are gnawed round, the hares have to feed on the rind of old trees, although this does not happen often. These are the traditions of the hare nutrition.

Nevertheless, hunger can make the animals change their ration. If the hares happen to find hay - they feed on hay. Once, in place of such stack there remained only a circle of hare excrement 7-10 centimeters high along the perimeter, hay-dust mixed with excrements lying in the middle. Sometimes the hares nibble tar, polyethylene, tarpaulin. The hunters from the town of Verkhoiansk used to tell about the cases when the hares were eating their entrapped congeners. However, there is one more way of getting food - an unconventional method of getting traditional forage. To get hold of tasty thin twigs, the hares purposefully fell trees.



The animals can cope with the trunks up to 4.5 meters in diameter. In different areas of Yakutia they deal with willows, alders, birches and larches. The hares fell the trees and normally gnaw away all young sprouts and twigs, but the rind often remains intact as it is less tasty. In other words, the hares picked up the method of food procurement the beavers employ. Unlike the beavers nibbling the trees taper off, the hares do not gnaw the trunks round, but do that on one side. The animals have to gnaw out up to 8 to10 cubic centimeters of dead wood which they normally avoid. On the opposite side of the trunk a thin narrow layer of rind and bast remains intact, the fallen tree often hanging by this layer. Sometimes such feeding transforms thick shoots of young trees into a control line: the stakes pointed up by the hares protrude from the ground, the stakes being several dozens of centimeters high, and the gnawed around trunks hang down from them resting against the ground.

The new method evidently brings advantages. The hares capable of felling small trees will stand better chances for of survival as they get access to high horizons of stand. In Central Yakutia willows and birches of 3 to 4 centimeters in diameter can grow up four meters high. By felling such a tree, the hare gets about half a kilogram of thin twigs and nearly the same amount of rind and bast, i. e. a hare’s daily ration.

In 1988 the Yakutsk researchers first came across such a peculiar way of getting
food. Such cases have not been described in published materials, but the scientists believe that this is not due to novelty of the method but because it is extremely rare. The hares are engaged in felling the trees only in case of extraordinary lack of food. Otherwise, the researchers have to assume that the Alpine hare population in Yakutia has given birth and accumulated the hares possessing a new tactics for obtaining food. Should the new tactics be consolidated, that will provide absolutely new opportunities for the species survival in extreme conditions and for developing new territories.

For additional information: +7 (411-2) 445-690; Fax: + 7 (411-2) 445-812; +7 (411-2) 241-290 or aepsh@mail.ru; lena-nord@sterh.sakha.com

Natalia Reznik | Informnauka
Further information:
http://www.informnauka.ru/eng/2003/2003-01-28-02_304_e.htm

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>