Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Reveal a New Way Viruses Cause Cells to Self-Destruct

19.11.2002


Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory and their collaborators have discovered that some viruses can use the most abundant protein in the cells they are infecting to destroy the cells and allow new viruses to escape to infect others. The findings, described in the November 29, 2002, issue of the Journal of Biological Chemistry, build upon earlier Brookhaven research on how virus particles become infectious (see related story) and may lead to the design of more effective antiviral remedies.


This ribbon diagram is a theoretical representation of the structure of adenovirus protease (red) bound to the cytoskeleton protein actin (green). The blue, green, and yellow balls show the location of the active site of the adenovirus protease.


The same two cells were photographed to show the location of the adenovirus protease (labeled with a green fluorescent molecule) and the cytoskeleton protein cytokeratin 18 (labeled with a red fluorescent molecule). The adenovirus protease is known to cleave cytokeratin 18 (as well as other cytoskeletal proteins), and this experiment shows they are located at the same sites within the cells.



"This is a new and philosophically interesting way for a virus to escape from cells," said Brookhaven biologist Walter Mangel, a coauthor on the paper. "In essence, a protein in the infected cells can serve as the seed of the cells’ own destruction."

Mangel’s group has previously shown that adenovirus -- a virus that causes respiratory and gastrointestinal infections and also conjunctivitis -- produces a protein-cleaving enzyme, or protease, to complete the maturation of newly synthesized virus particles. Similar to the way supportive scaffolding is removed after the completion of a construction project, this protease cleaves, or cuts out, viral "construction" proteins, leaving infectious virus particles behind.


This viral protease is produced in the cytoplasm in an inactive form, and must migrate to the nucleus to become activated in newly synthesized viral particles by two viral cofactors. Once activated, it can cleave several viral proteins to complete the viral maturation process. There were no indications that the protease could be activated in the cell’s cytoplasm.

When Mangel presented this research at a seminar at Princeton University, Clarence Schutt, a Princeton chemistry professor, pointed out that the amino acid sequence of one of the viral cofactors was dramatically similar to the sequence of actin, a cytoplasmic protein that gives shape and structure to cells. Mangel wondered if actin could activate the protease, and took some from Schutt’s lab back to Brookhaven to do the experiment.

The result: Incubating actin and the adenovirus protease increased the cleaving ability of the protease, just like the viral cofactor did, allowing the actin-protease complex to cleave actin itself, as well as other cellular skeleton proteins.

"When actin and other cytoskeleton proteins are destroyed," Mangel explained, "a cell loses its shape and eventually breaks open, allowing the newly synthesized virus particles to escape and infect other cells."

While other viruses are known to cleave actin and other cytoskeleton proteins as a means of breaking free to continue infection, none of them is known to use actin as a cofactor in this process, Mangel said. "Thus, the really interesting finding in this case is that actin is a cofactor for its own destruction," Mangel said.

The next step for Mangel’s group will be to crystallize complexes of actin bound to the adenovirus protease to determine its atomic structure at the National Synchrotron Light Source at Brookhaven.

"The structure would then be used to find drugs to prevent the interaction between actin and the adenovirus protease," Mangel said. "Such drugs could serve as a new type of antiviral agent."

This work was done in collaboration with Mark Brown, Kevin McBride, Mary Lynn Baniecki, and Nancy Reich of Stony Brook University and Gerard Marriott of the University of Wisconsin. It was funded by the U.S. Department of Energy, which supports basic research in a variety of scientific fields, and the National Institutes of Health.

Karen McNulty Walsh, | Brookhaven National Laboratory
Further information:
http://www.bnl.gov/bnlweb/pubaf/pr/2002/bnlpr111902.htm

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>