Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify ’master’ molecule that controls action of many genes

19.11.2002


UCSF-led scientists have identified the first "master" molecule in the cell nucleus that controls the action of hundreds of different genes at once through its action on enzymes. The broad-acting molecule affects enzymes that restructure chromosomes, exposing genes to proteins that can then trigger key gene processes, including the start of protein production and copying and repairing of genes.



The molecule’s broad effect on a number of genes may allow organisms – including humans -- to respond quickly to stress, the scientists say. The research finding is based on studies of yeast, but the same molecule is present in humans and all higher organisms. Mutations that affect enzymes involved in chromosome restructuring have been linked to human cancers.

The study is published by SCIENCE through its Science Express web site. The paper will appear in a later print issue of SCIENCE.


"Many enzymes have been identified that modify chromosome structure and trigger gene transcription, but this is the first example of a molecule that regulates these restructuring enzymes and can affect many, many genes at once," said Erin O’Shea, PhD, a Howard Hughes Medical Institute Investigator and professor of biochemistry at UCSF. O’Shea is senior author on the paper. (Transcription is the first key gene process that ultimately leads to the synthesis of new proteins.)

"This molecule’s action might allow the cell to regulate the activity of a number of genes in response to stress," O’Shea said. "Chromosome-altering enzymes control important genes in cells. Mutations in the corresponding human enzymes predispose people to a variety of cancers."

The SCIENCE paper clarifies how one molecule, known as inositol polyphosphate, regulates two chromosome-modifying enzymes inside yeast cells. In the same issue of SCIENCE, a team led by researchers at the National Institutes of Health reports results from test tube experiments also showing the molecule controls these enzymes, plus a third that similarly modifies chromosome structure. Together, the two papers show that three enzymes, controlling the action of many hundreds of genes, are themselves regulated by this single inositol polyphosphate molecule.

In the nucleus of cells of all higher organisms, from yeast to humans, DNA is bound to proteins called histones and organized to form basic repeating elements of the chromosome, known as nucleosomes. The packaging of DNA into nucleosomes inhibits "unintended" gene transcription by physically limiting the ability of key proteins to access the DNA. In the past few years, scientists have identified several enzyme complexes that alter the nucleosome structure to allow access to DNA, and gene transcription to begin.

A number of these enzymes that are powered by the cell’s energy molecule ATP are called "ATP-dependent chromatin remodeling complexes." Although these enzymes have been studied a great deal, little is known about how they are regulated, the scientists write. The new research shows that the small molecule inositiol polyphosphate regulates some of these enzymes -- presumably by binding to the enzymes and changing their activity.

In the new research, O’Shea and colleagues identified a defective gene, known as ARG82, in budding yeast mutants. They showed that the gene encodes a protein that helps make inositol polyphosphate in the cell nucleus. In yeast lacking this gene, the normal chromatin restructuring of another gene is impaired, they found, and as a result, the ATP-dependent remodeling enzymes do not get "recruited" to the appropriate part of the gene.

The scientists suggest that the ability of inositol polyphosphate to affect the action of a large number of genes may allow organisms to respond quickly and "globally" to environmental change or stress:

"It is possible that the levels or ratios of inositol polyphosphate are altered under certain physiological conditions and that this change may be used by the cell as a signal for global regulation of …transcription," they conclude.

Lead author on the paper is David J. Steger, PhD, a postdoctoral scientist in O’Shea’s lab. Co-authors are Elizabeth S. Haswell, PhD, former graduate student in O’Shea’s lab; Susan R. Wente, PhD, professor and chair of cell and developmental biology at Vanderbilt University; and Aimee L. Miller, a postdoctoral fellow in Wente’s lab.


The research is funded by the National Institutes of Health, the Howard Hughes Medical Institute, the Steven and Michelle Kirsch Foundation, the David and Lucille Packard Foundation and the Leukemia and Lymphoma Society.

Wallace Ravven | EurekAlert!

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>