Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Large-scale climate change linked to simultaneous population fluctuations in arctic mammals

14.11.2002


Scientists have shown, for the first time, that changes in a large-scale climate system can synchronize population fluctuations in multiple mammal species across a continent-scale region. The study, to be published in the 14 November 2002 issue of the journal Nature, compares long-term data on the climate system known as the North Atlantic Oscillation with long-term data from Greenland on the population dynamics of caribou and muskoxen, which are large mammals adapted to breeding in the Arctic.


Credit: Eric Post, Penn State



"The Arctic can provide useful early-warning signals for the rest of the world because the species that live in this sensitive region are expected to be among the first to show the effects of the Earth’s changing climate," says Eric Post, assistant professor of biology at Penn State University, who is a coauthor of the study along with Mads C. Forchhammer, associate professor of ecology at the University of Copenhagen in Denmark. "Here we have a very simple system with a very clear signal: two species on opposite sides of a continent that never mix, never compete for food, and have no common predators, yet their population dynamics are synchronized. The only thing they have in common is the large-scale climate system that influences weather throughout the northern hemisphere," Post comments.

Post and Forchhammer studied seven herds of caribou and six herds of muskoxen in Greenland, where the two species live on opposite costs and are separated by an impassable continent-wide ice sheet spanning about 600 miles (1,000 kilometers) at its minimum width. "We chose to study these two species in Greenland because their complete physical and ecological separation rules out the alternative explanations that have confounded previous studies of the role of climate in synchronizing population dynamics, leaving only weather as the controlling factor," Post explains.


Previous research had focused either on a single species in a habitat that allowed individuals to move from one population to another, or on different species whose lives are somehow intertwined, such as two species that share a common predator. The researchers say their study is the first using both local and global weather data to show cross-species synchrony in species that have no direct contact with each other and that share nothing in common except for the effect on their local weather of a large-scale climate system.

The large-scale system that affects winter weather in Greenland and much of the northern hemisphere is the North Atlantic Oscillation (NAO). "The North Atlantic Oscillation can be pictured as a fluctuating pressure corridor that squeezes and channels the westerly winds between North America and northern Europe, influencing the direction and speed of the winds and affecting temperature and precipitation on both sides of the North Atlantic Ocean," Post explains. "It also bears some relation to the much larger Arctic Oscillation, which is centered over the North Pole and which seems to exert its greatest influence on spring temperatures in the northern hemisphere," he adds.

In order to gauge how strongly the North Atlantic Oscillation affects local weather conditions on the coasts of Greenland where the muskoxen and caribou live, the researchers compared records of each herd’s local weather history with the NAO index--a measure of the condition of the North Atlantic Oscillation that has been in use from 1864 to the present. They then sequentially compared each of the caribou herds with each of the muskox herds, looking at the degree of their geographical separation, the timing of their population fluctuations, the weather conditions affecting each herd, and the degree of the North Atlantic Oscillation’s influence on the herd’s population dynamics. "We found that whenever the NAO had an approximately equal effect on the population dynamics of two herds, these fluctuations were more synchronized, even though the herds were on opposite sides of the subcontinent of Greenland," Post says. Similarly, the researchers found that whenever the North Atlantic Oscillation exerted opposite effects on herds of the two species, their population dynamics were out of phase with each other--when one was thriving the other was declining.

"The physical isolation of the caribou and muskox populations by the continent-wide ice sheet in Greenland, along with their lack of shared competition for food and their lack of shared predators, greatly simplifies the analysis of the role of climate in synchronizing their population dynamics," Post says. "It is difficult to explain these results by means other than the influence of the North Atlantic Oscillation, which simultaneously affects both of them," he says.

Because the severity of the climate also is an important factor that can affect herd size, Post and his colleagues have conducted similar studies in areas with climates milder than that in Greenland. Their results have shown influences of the North Atlantic Oscillation on the dynamics of many species of large mammals, birds, and plants throughout the North Atlantic region, including areas with milder weather than in Greenland. "Changes in large-scale climate systems can affect the population dynamics of many species, even where the climate is not as severe as it is in Greenland," Forchhammer says.

As a result of this research, other scientists may begin to look at the effect of large-scale climate systems on the animals they have been studying. "What does this tell us about the potential ecological consequences of future climate change?" Post asks. "At the very least it should make us wonder whether climate trends might bring into synchrony the ups and downs of populations of species that currently are fluctuating independently," he says.

This research was sponsored by the U. S. National Science Foundation, the Penn State Environmental Consortium, and the Danish National Science Research Council. A study by Forchhammer, Post, and colleagues that provides more information about the role of the North Atlantic Oscillation on the muskox and caribou herds in Greenland recently was published in the September 2002 issue of the journal Population Ecology.


PHOTOS:
Reporters may obtain high-resolution images of musk oxen and caribou photographed in Greenland by Eric Post from a link at http://www.science.psu.edu/alert/Post11-2002.htm

CONTACTS:
Eric Post: phone 814-865-1556, e-mail esp10@psu.edu
Mads C. Forchhammer: phone 45-3532-1255, e-mail MCForchhammer@zi.ku.dk
Barbara K. Kennedy (PIO): phone 814-863-4682, e-mail science@psu.edu

Barbara K. Kennedy | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>