Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Large-scale climate change linked to simultaneous population fluctuations in arctic mammals

14.11.2002


Scientists have shown, for the first time, that changes in a large-scale climate system can synchronize population fluctuations in multiple mammal species across a continent-scale region. The study, to be published in the 14 November 2002 issue of the journal Nature, compares long-term data on the climate system known as the North Atlantic Oscillation with long-term data from Greenland on the population dynamics of caribou and muskoxen, which are large mammals adapted to breeding in the Arctic.


Credit: Eric Post, Penn State



"The Arctic can provide useful early-warning signals for the rest of the world because the species that live in this sensitive region are expected to be among the first to show the effects of the Earth’s changing climate," says Eric Post, assistant professor of biology at Penn State University, who is a coauthor of the study along with Mads C. Forchhammer, associate professor of ecology at the University of Copenhagen in Denmark. "Here we have a very simple system with a very clear signal: two species on opposite sides of a continent that never mix, never compete for food, and have no common predators, yet their population dynamics are synchronized. The only thing they have in common is the large-scale climate system that influences weather throughout the northern hemisphere," Post comments.

Post and Forchhammer studied seven herds of caribou and six herds of muskoxen in Greenland, where the two species live on opposite costs and are separated by an impassable continent-wide ice sheet spanning about 600 miles (1,000 kilometers) at its minimum width. "We chose to study these two species in Greenland because their complete physical and ecological separation rules out the alternative explanations that have confounded previous studies of the role of climate in synchronizing population dynamics, leaving only weather as the controlling factor," Post explains.


Previous research had focused either on a single species in a habitat that allowed individuals to move from one population to another, or on different species whose lives are somehow intertwined, such as two species that share a common predator. The researchers say their study is the first using both local and global weather data to show cross-species synchrony in species that have no direct contact with each other and that share nothing in common except for the effect on their local weather of a large-scale climate system.

The large-scale system that affects winter weather in Greenland and much of the northern hemisphere is the North Atlantic Oscillation (NAO). "The North Atlantic Oscillation can be pictured as a fluctuating pressure corridor that squeezes and channels the westerly winds between North America and northern Europe, influencing the direction and speed of the winds and affecting temperature and precipitation on both sides of the North Atlantic Ocean," Post explains. "It also bears some relation to the much larger Arctic Oscillation, which is centered over the North Pole and which seems to exert its greatest influence on spring temperatures in the northern hemisphere," he adds.

In order to gauge how strongly the North Atlantic Oscillation affects local weather conditions on the coasts of Greenland where the muskoxen and caribou live, the researchers compared records of each herd’s local weather history with the NAO index--a measure of the condition of the North Atlantic Oscillation that has been in use from 1864 to the present. They then sequentially compared each of the caribou herds with each of the muskox herds, looking at the degree of their geographical separation, the timing of their population fluctuations, the weather conditions affecting each herd, and the degree of the North Atlantic Oscillation’s influence on the herd’s population dynamics. "We found that whenever the NAO had an approximately equal effect on the population dynamics of two herds, these fluctuations were more synchronized, even though the herds were on opposite sides of the subcontinent of Greenland," Post says. Similarly, the researchers found that whenever the North Atlantic Oscillation exerted opposite effects on herds of the two species, their population dynamics were out of phase with each other--when one was thriving the other was declining.

"The physical isolation of the caribou and muskox populations by the continent-wide ice sheet in Greenland, along with their lack of shared competition for food and their lack of shared predators, greatly simplifies the analysis of the role of climate in synchronizing their population dynamics," Post says. "It is difficult to explain these results by means other than the influence of the North Atlantic Oscillation, which simultaneously affects both of them," he says.

Because the severity of the climate also is an important factor that can affect herd size, Post and his colleagues have conducted similar studies in areas with climates milder than that in Greenland. Their results have shown influences of the North Atlantic Oscillation on the dynamics of many species of large mammals, birds, and plants throughout the North Atlantic region, including areas with milder weather than in Greenland. "Changes in large-scale climate systems can affect the population dynamics of many species, even where the climate is not as severe as it is in Greenland," Forchhammer says.

As a result of this research, other scientists may begin to look at the effect of large-scale climate systems on the animals they have been studying. "What does this tell us about the potential ecological consequences of future climate change?" Post asks. "At the very least it should make us wonder whether climate trends might bring into synchrony the ups and downs of populations of species that currently are fluctuating independently," he says.

This research was sponsored by the U. S. National Science Foundation, the Penn State Environmental Consortium, and the Danish National Science Research Council. A study by Forchhammer, Post, and colleagues that provides more information about the role of the North Atlantic Oscillation on the muskox and caribou herds in Greenland recently was published in the September 2002 issue of the journal Population Ecology.


PHOTOS:
Reporters may obtain high-resolution images of musk oxen and caribou photographed in Greenland by Eric Post from a link at http://www.science.psu.edu/alert/Post11-2002.htm

CONTACTS:
Eric Post: phone 814-865-1556, e-mail esp10@psu.edu
Mads C. Forchhammer: phone 45-3532-1255, e-mail MCForchhammer@zi.ku.dk
Barbara K. Kennedy (PIO): phone 814-863-4682, e-mail science@psu.edu

Barbara K. Kennedy | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>