Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The brain gets the big picture

01.11.2002


When you look at a picture, your brain has to put together lines, patterns and shapes to make a meaningful scene. New research by neuroscientists at the University of California, Davis and the University of Minnesota shows that higher regions of the brain can quickly recognize patterns and shapes and tell lower areas of the brain to stop processing the information. The finding confirms predictions from computer models and helps explain how the human brain makes sense of what the eyes see.



Scott Murray, Bruno Olshausen and David Woods from UC Davis and the VA Medical Center in Martinez, with Daniel Kersten and Paul Schrater from the University of Minnesota, Twin Cities, used functional magnetic resonance imaging (fMRI) to see which parts of the brain were active as subjects looked at different patterns and shapes.

Current theories hold that a lower area of the brain called the primary visual cortex responds to simple features such as edges and lines and passes this information on to higher, pattern-recognizing parts of the brain.


When the researchers showed subjects random patterns of lines, the primary visual cortex lit up on the fMRI scan. When the same lines were organized into a shape, a higher part of the brain called the lateral occipital complex (LOC) was activated, but the primary visual cortex was less active. That shows that when the LOC recognizes a pattern in the information it gets from the primary visual cortex, it can send a message back down the pathway to tell the lower area of the brain to stop responding.

"Things in the environment are not random. The higher areas of the brain expect order and pick it out," Murray said. The brain should be better able to detect new or different items if it can pick out common patterns first, he said.


The research is published in the October 28 issue of Proceedings of the National Academy of Sciences of the USA.

Media contacts: Scott O. Murray, Center for Neuroscience, 530-757-8789, somurray@ucdavis.edu; Andy Fell, News Service, 530-752-4533, ahfell@ucdavis.edu

Andy Fell | EurekAlert!
Further information:
http://redwood.ucdavis.edu/scott/research/fmri/

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>