Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The brain gets the big picture

01.11.2002


When you look at a picture, your brain has to put together lines, patterns and shapes to make a meaningful scene. New research by neuroscientists at the University of California, Davis and the University of Minnesota shows that higher regions of the brain can quickly recognize patterns and shapes and tell lower areas of the brain to stop processing the information. The finding confirms predictions from computer models and helps explain how the human brain makes sense of what the eyes see.



Scott Murray, Bruno Olshausen and David Woods from UC Davis and the VA Medical Center in Martinez, with Daniel Kersten and Paul Schrater from the University of Minnesota, Twin Cities, used functional magnetic resonance imaging (fMRI) to see which parts of the brain were active as subjects looked at different patterns and shapes.

Current theories hold that a lower area of the brain called the primary visual cortex responds to simple features such as edges and lines and passes this information on to higher, pattern-recognizing parts of the brain.


When the researchers showed subjects random patterns of lines, the primary visual cortex lit up on the fMRI scan. When the same lines were organized into a shape, a higher part of the brain called the lateral occipital complex (LOC) was activated, but the primary visual cortex was less active. That shows that when the LOC recognizes a pattern in the information it gets from the primary visual cortex, it can send a message back down the pathway to tell the lower area of the brain to stop responding.

"Things in the environment are not random. The higher areas of the brain expect order and pick it out," Murray said. The brain should be better able to detect new or different items if it can pick out common patterns first, he said.


The research is published in the October 28 issue of Proceedings of the National Academy of Sciences of the USA.

Media contacts: Scott O. Murray, Center for Neuroscience, 530-757-8789, somurray@ucdavis.edu; Andy Fell, News Service, 530-752-4533, ahfell@ucdavis.edu

Andy Fell | EurekAlert!
Further information:
http://redwood.ucdavis.edu/scott/research/fmri/

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>