Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Ping-Pong’ mechanism seen in gene-controlling enzyme

30.10.2002


An enzyme that plays a pivotal role in controlling genes in yeast acts through a more versatile mechanism than was previously thought to be the case, according to a new study by researchers at The Wistar Institute.



Its mode of action is also distinct from that of other members of the vital enzyme family into which it falls, the scientists found. Because the human counterpart of the enzyme has been associated with certain forms of leukemia, this observation raises the possibility that drugs designed to specifically inhibit the enzyme might be useful in treating these cancers.

A report on the study appears in the November issue of Nature Structural Biology.


The enzyme studied, called Esa1, is one of a family of enzymes called HATs, which are responsible for relaxing, when appropriate, the tightly compacted DNA packaging that prevents genes from being accessed and activated most of the time. HATs do this by transferring an acetyl group from a coenzyme donor molecule to target proteins called histones that control the DNA packaging.

Other members of the enzyme family can accomplish this transfer only when all three components - the donor molecule, the enzyme, and the target - are in the same place. Esa1, on the other hand, is able to temporarily accept an acetyl group from the coenzyme donor before handing it off to the histone protein.

"This enzyme uses what we call a ping-pong mechanism," says Ronen Marmorstein, Ph.D., senior author on the study and an associate professor at The Wistar Institute. "First the acetyl molecule is transferred to the enzyme - ping - and then it goes from the enzyme to the histone protein - pong. It’s a different and more flexible way of getting your business done."

The time during which the enzyme is carrying the acetyl group is quite brief, Marmorstein notes, but he and his team were able to trap the moment in a crystallized form of the enzyme that they were then able to analyze more closely.

Earlier studies by Marmorstein’s group had shown that the molecular structure of the active region of the enzyme was nearly identical to the structures of the corresponding regions of other HATs. At that time, his team hypothesized that the mode of action of the enzymes might also be similar. The current study showed this not to be the case, however.

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.upenn.edu/

More articles from Life Sciences:

nachricht Biomarkers for identifying Tumor Aggressiveness
26.07.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>