Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Ping-Pong’ mechanism seen in gene-controlling enzyme

30.10.2002


An enzyme that plays a pivotal role in controlling genes in yeast acts through a more versatile mechanism than was previously thought to be the case, according to a new study by researchers at The Wistar Institute.



Its mode of action is also distinct from that of other members of the vital enzyme family into which it falls, the scientists found. Because the human counterpart of the enzyme has been associated with certain forms of leukemia, this observation raises the possibility that drugs designed to specifically inhibit the enzyme might be useful in treating these cancers.

A report on the study appears in the November issue of Nature Structural Biology.


The enzyme studied, called Esa1, is one of a family of enzymes called HATs, which are responsible for relaxing, when appropriate, the tightly compacted DNA packaging that prevents genes from being accessed and activated most of the time. HATs do this by transferring an acetyl group from a coenzyme donor molecule to target proteins called histones that control the DNA packaging.

Other members of the enzyme family can accomplish this transfer only when all three components - the donor molecule, the enzyme, and the target - are in the same place. Esa1, on the other hand, is able to temporarily accept an acetyl group from the coenzyme donor before handing it off to the histone protein.

"This enzyme uses what we call a ping-pong mechanism," says Ronen Marmorstein, Ph.D., senior author on the study and an associate professor at The Wistar Institute. "First the acetyl molecule is transferred to the enzyme - ping - and then it goes from the enzyme to the histone protein - pong. It’s a different and more flexible way of getting your business done."

The time during which the enzyme is carrying the acetyl group is quite brief, Marmorstein notes, but he and his team were able to trap the moment in a crystallized form of the enzyme that they were then able to analyze more closely.

Earlier studies by Marmorstein’s group had shown that the molecular structure of the active region of the enzyme was nearly identical to the structures of the corresponding regions of other HATs. At that time, his team hypothesized that the mode of action of the enzymes might also be similar. The current study showed this not to be the case, however.

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.upenn.edu/

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>