Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene found that helps nerve cells survive by preventing cell suicide

26.09.2002


Finding may lead to new treatments for neurologic disease and nerve injury



Why do some nerve cells survive and regrow after injury while others shrink away and die? A new discovery by researchers at Massachusetts General Hospital (MGH) shows that the expression of a particular gene may be responsible for protecting neurons from death. The results, published in the September 26 issue of Neuron, could lead the way for new treatment strategies for a variety of neurological diseases.

"Turning on the gene named Hsp27 could potentially rescue nerve cells in patients with neurodegenerative conditions such as Lou Gehrig’s disease," says principal investigator Clifford Woolf, MD, PhD, of the Neural Plasticity Research Group in the Department of Anesthesia and Critical Care at MGH.


Woolf and his colleagues found that young sensory and motor nerve cells die after injury because the heat shock protein 27 gene (Hsp27) is not turned on in these cells. In adult cells however, the gene is expressed. The resulting protein that is produced protects these mature nerve cells from death following an injury.

"As part of normal development, many more neurons are made than are needed," says Woolf, who also is Richard J. Kitz Professor of Anesthesia Research at Harvard Medical School. "So some must be pruned away by essentially committing cell suicide, a phenomenon known as programmed cell death. It seems that Hsp27 is turned off to allow for this normal developmental process."

Woolf explains that once an individual reaches adulthood, nerve cells in the body are permanent and irreplaceable. "That’s why it’s important to have a repair mechanism for older neurons," he says. The protein made by the Hsp27 gene blocks cell suicide from taking place following injury, rescuing injured cells. For example, cells expressing the Hsp27 protein acquire resistance to excessive heat, chemical stress, and toxins. Hsp27 directly inhibits the cellular proteins that trigger programmed cell death.

In laboratory dishes and in rat models, Woolf and his team showed that, if the Hsp27 gene is delivered to young nerve cells using gene therapy with viral vectors, the cells are able to survive injury just as well as older nerve cells. Equally, if the gene is switched off in adults, those cells will die. "Hopefully, therapy that prevents cell death by delivering genes like Hsp27 will someday find its way into the clinic," says Woolf. "Patients with Lou Gehrig’s disease, for example, suffer a progressive death of their motor neurons leading to paralysis. If Hsp27 were able to prevent the death of the neurons in these patients, it would offer the possibility of new therapy, something we plan to test"

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>