Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly revealed viral structure suggests a continuum in the evolution of viruses

26.09.2002


An international team of scientists led by researchers at The Wistar Institute has combined two different imaging techniques to uncover the molecular-level framework of a common bacteriophage, a virus that infects bacteria. The results, reported in the October issue of Nature Structural Biology, suggest that viruses developed a continuum of progressively more complex architectural strategies to cope with their increasing size as they evolved. An image from the study is featured on the journal’s cover.



The new findings may open a novel approach to developing therapies for certain difficult-to-treat infections. The bacteriophage studied, called PRD1, infects antibiotic-resistant strains of E. coli bacteria, including strains responsible for tens of thousands of cases of food poisoning in the United States each year. The intimate knowledge of PRD1’s structure provided by the current study might help scientists develop a treatment for E. coli infections involving PRD1.

The structural details show that the bacteriophage has similarities to viruses smaller than itself, simple plant and animal viruses whose outer coats are formed from proteins held together by linked "arms." In addition, however, it also uses small "glue" proteins to cement larger proteins together. This feature makes it more like the human adenoviruses, larger and more complex viruses that infect the respiratory tract and cause other diseases. Taken together, these features place the bacteriophage at an intermediate point on the viral evolutionary tree and help illuminate the overall evolutionary path taken by families of viruses.


The new images show not only the outer coat of the bacteriophage, but also reveal details of its inner membrane, a poorly-understood fatty double layer beneath the coat that forms a protective barrier around the genetic material, or DNA.

"We have been intrigued by the parallels between PRD1 and adenovirus since we discovered striking similarities in their overall structure in earlier studies," says structural biologist Roger M. Burnett, Ph.D., a professor at The Wistar Institute and senior author on the Nature Structural Biology study. "Our results reveal that PRD1 also has similarities to simpler viruses and reinforce the idea that there is a continuum of viral architectures running through viruses that infect such different hosts as bacteria, plants, and animals, including humans. An appreciation of these parallels is important, as findings in one viral system may provide valuable insights into another. We have also learned more about membranes, which are very hard to study with conventional techniques, and see now how they can be involved in packaging viral DNA."

The two imaging techniques used by the researchers to dissect the structure of PRD1 are electron microscopy and X-ray crystallography. Computer modeling was used to combine images of an entire virus particle provided by the relatively low-resolution technique of electron microscopy with the high-resolution molecular structure of the coat protein obtained through X-ray crystallography. The resultant "quasi-atomic" structure of the proteins forming the outer envelope of the virus was then stripped away by a kind of graphical "surgery" to reveal details of the other molecules forming the viral interior.

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.upenn.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>