Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NIAMS Scientists Find Biochemical "Switch" Directs Muscle Building


Scientists may soon be able to influence muscle formation more easily as a result of research conducted in the National Institute of Arthritis and Musculoskeletal and Skin Diseases’ Laboratory of Muscle Biology. The researchers there and at institutions in California and Italy have found that inhibitors of the enzyme deacetylase can switch the pathway of muscle precursor cells (myoblasts) from simply reproducing themselves to becoming mature cells that form muscle fibers (myotubules).

It has been known for some time that deacetylase prevents the skeletal muscle gene from being expressed, which inhibits myoblasts from forming muscle. The research team has found that under certain conditions, deacetylase inhibitors (DIs) in myoblasts enhance muscle gene expression and muscle fiber formation.

Knowledge of how DIs act against deacetylase is providing important insights on potential ways to correct problems that occur during embryonic muscle development. This research may also lead to methods to induce muscle growth, regeneration and repair in adults.

Simona Iezzi, Ph.D., and Vittorio Sartorelli, M.D., in the NIAMS Muscle Gene Expression Group, along with Pier Lorenzo Puri, M.D., at the Salk Institute for Biological Studies and other investigators at the University of Rome, exposed human and mouse myoblasts to DIs while they were dividing or after placement in a medium that stimulates myoblasts to become muscle cells. The researchers found that exposing dividing human and mouse myoblasts to a DI increased the levels of muscle proteins and led to a dramatic increase in the formation of muscle fibers. Similar experiments were done in developing mouse embryos, resulting in an increased number of somites (the regions of the embryo from which muscle cells are derived) and augmented expression of muscle genes.

Dr. Sartorelli’s group continues to investigate how the myoblasts are stimulated to fuse into myotubules. One theory is that the performance of poorly differentiated myoblasts is enhanced when they are recruited by cells with a good capacity to differentiate. Further research will be directed at discovering whether the cells that have been induced to form muscle will restore muscle function when transplanted into a mouse model of muscular dystrophy. In addition, the researchers at the NIAMS Muscle Gene Expression Group plan to expose adult muscle stem cells from a mouse model to DIs to understand their biology and their potential use as therapeutic tools.

The mission of the National Institute of Arthritis and Musculoskeletal and Skin Diseases is to support research into the causes, treatment, and prevention of arthritis and musculoskeletal and skin diseases, the training of basic and clinical scientists to carry out this research, and the dissemination of information on research progress in these diseases. For more information about NIAMS, please call (301) 495-4484 or (877) 22-NIAMS (free call) or visit the NIAMS Web site at

Iezzi S, Cossu G, Nervi C, Sartorelli V, Puri P. Stage-specific modulation of skeletal myogenesis by inhibitors of nuclear deacetylases. PNAS 2002;99(11):7757-7762.

Judith Wortman | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>