Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA’s oscillating double helix hinders electrical conduction

11.09.2002


DNA has an oscillating double-helix structure. This oscillating means that the DNA molecules conduct electricity much less well than was previously thought. Ultrafast cameras were one of the devices the researchers from Amsterdam used to demonstrate this.



It turns out the DNA does not have a rigid regular structure as stated in textbooks. In reality the double helix of DNA forms a very dynamic chaotic system. The rigid structure in textbooks should be regarded as the average position of many structures taken over a period of time.

The Amsterdam researchers showed that the chaotic movements limit the electrical conductivity properties of DNA. Electrical conductivity, even if it is imperfect, is of vital importance for the cell. For example, the cell uses electrons from the charge transfer in DNA to repair damaged bonds.


According to the researchers the electrical conductivity would be much better if DNA had a fixed double-helix structure in which the individual building blocks were neatly stacked on top of each other.

The results have consequences for scientists who are developing new molecular microelectronics. In this sort of experimental electronics the DNA molecules would have to be able to initiate a range of reactions by means of charge transfer. The electronics specialists must now take the inefficient electrical conductivity of DNA into consideration.

The DNA examined by researchers included a piece of DNA with the form of a hair clip. It is similar to an important piece of RNA in the HIV virus. Researchers incorporated fluorescent molecule groups in a very specific manner. They then bombarded the piece of DNA with extremely short laser pulses. A special type of camera registered how the molecule fluoresced.

The experimental set-up of the Amsterdam researchers can observe movements or vibrations which occur in one millionth of a millionth of a second. Or put scientifically the set-up has a resolution of a picosecond. To put this into perspective: normal film cameras take 24 pictures per second and only detect the vibration if it lasts longer than 0.02 seconds.

Michel Philippens | alfa

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>