Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA’s oscillating double helix hinders electrical conduction

11.09.2002


DNA has an oscillating double-helix structure. This oscillating means that the DNA molecules conduct electricity much less well than was previously thought. Ultrafast cameras were one of the devices the researchers from Amsterdam used to demonstrate this.



It turns out the DNA does not have a rigid regular structure as stated in textbooks. In reality the double helix of DNA forms a very dynamic chaotic system. The rigid structure in textbooks should be regarded as the average position of many structures taken over a period of time.

The Amsterdam researchers showed that the chaotic movements limit the electrical conductivity properties of DNA. Electrical conductivity, even if it is imperfect, is of vital importance for the cell. For example, the cell uses electrons from the charge transfer in DNA to repair damaged bonds.


According to the researchers the electrical conductivity would be much better if DNA had a fixed double-helix structure in which the individual building blocks were neatly stacked on top of each other.

The results have consequences for scientists who are developing new molecular microelectronics. In this sort of experimental electronics the DNA molecules would have to be able to initiate a range of reactions by means of charge transfer. The electronics specialists must now take the inefficient electrical conductivity of DNA into consideration.

The DNA examined by researchers included a piece of DNA with the form of a hair clip. It is similar to an important piece of RNA in the HIV virus. Researchers incorporated fluorescent molecule groups in a very specific manner. They then bombarded the piece of DNA with extremely short laser pulses. A special type of camera registered how the molecule fluoresced.

The experimental set-up of the Amsterdam researchers can observe movements or vibrations which occur in one millionth of a millionth of a second. Or put scientifically the set-up has a resolution of a picosecond. To put this into perspective: normal film cameras take 24 pictures per second and only detect the vibration if it lasts longer than 0.02 seconds.

Michel Philippens | alfa

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>