DNA’s oscillating double helix hinders electrical conduction

DNA has an oscillating double-helix structure. This oscillating means that the DNA molecules conduct electricity much less well than was previously thought. Ultrafast cameras were one of the devices the researchers from Amsterdam used to demonstrate this.

It turns out the DNA does not have a rigid regular structure as stated in textbooks. In reality the double helix of DNA forms a very dynamic chaotic system. The rigid structure in textbooks should be regarded as the average position of many structures taken over a period of time.

The Amsterdam researchers showed that the chaotic movements limit the electrical conductivity properties of DNA. Electrical conductivity, even if it is imperfect, is of vital importance for the cell. For example, the cell uses electrons from the charge transfer in DNA to repair damaged bonds.

According to the researchers the electrical conductivity would be much better if DNA had a fixed double-helix structure in which the individual building blocks were neatly stacked on top of each other.

The results have consequences for scientists who are developing new molecular microelectronics. In this sort of experimental electronics the DNA molecules would have to be able to initiate a range of reactions by means of charge transfer. The electronics specialists must now take the inefficient electrical conductivity of DNA into consideration.

The DNA examined by researchers included a piece of DNA with the form of a hair clip. It is similar to an important piece of RNA in the HIV virus. Researchers incorporated fluorescent molecule groups in a very specific manner. They then bombarded the piece of DNA with extremely short laser pulses. A special type of camera registered how the molecule fluoresced.

The experimental set-up of the Amsterdam researchers can observe movements or vibrations which occur in one millionth of a millionth of a second. Or put scientifically the set-up has a resolution of a picosecond. To put this into perspective: normal film cameras take 24 pictures per second and only detect the vibration if it lasts longer than 0.02 seconds.

Media Contact

Michel Philippens alfa

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Red light therapy for repairing spinal cord injury passes milestone

Patients with spinal cord injury (SCI) could benefit from a future treatment to repair nerve connections using red and near-infrared light. The method, invented by scientists at the University of…

Insect research is revolutionized by technology

New technologies can revolutionise insect research and environmental monitoring. By using DNA, images, sounds and flight patterns analysed by AI, it’s possible to gain new insights into the world of…

X-ray satellite XMM-newton sees ‘space clover’ in a new light

Astronomers have discovered enormous circular radio features of unknown origin around some galaxies. Now, new observations of one dubbed the Cloverleaf suggest it was created by clashing groups of galaxies….

Partners & Sponsors