Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Teaching old drugs new tricks

11.07.2008
Scientists predict new uses for existing drugs from their side effects

Researchers from the European Molecular Biology Laboratory (EMBL) discovered a new way to make use of drugs’ unwanted side effects. They developed a computational method that compares how similar the side effects of different drugs are and predicts how likely the drugs act on the same target molecule. The study, published in Science this week, hints at new uses of marketed drugs.

Similar drugs often share target proteins, modes of action and unpleasant side effects. In reverse this means that drugs that evoke similar side effects likely act on the same molecular targets. A team of EMBL researchers now developed a computational tool that compares side effects to test if they can predict common targets of drugs.

“Such a correlation not only reveals the molecular basis of many side effects, but also bears a powerful therapeutic potential. It hints at new uses of marketed drugs in the treatment of diseases they were not specifically developed for,” says Peer Bork, Joint Coordinator of EMBL’s Structural and Computational Biology Unit.

... more about:
»developed »effect »therapeutic

The approach would prove particularly useful for chemically dissimilar drugs used in different therapeutic areas that nevertheless have an overlapping, so far unknown protein target profile. Similar strategies have proven successful in the past. For example, the drug marketed as Viagra was initially developed to treat angina, but its side effects of prolonged penile erection led to a change in its therapeutic area.

Applying the new method to 746 marketed drugs, the scientists found 261 dissimilar drugs that in addition to their known action also likely bind to other unexpected molecular targets. 20 of these drugs were then tested experimentally and 13 showed binding to the targets that were predicted by side effect similarity. Testing 9 of these drugs further in cellular assays they all showed activity and thus a desired effect on the cell through their interaction with the newly discovered target proteins.

The results reveal that side effects can help find new, relevant drug-target interactions that might form the basis of new therapies. The brain enhancer Donepezil, for example, proved to share a target with the anti-depressant Venlafaxine, supporting that Donepezil could be also used to treat depression.

The big advantage of marketed drugs is that they have already been tested and approved for safe use in patients. This means they can move a lot faster from bench to bedside than newly discovered drugs that often take up to 15 years before they can be applied in patients.

“With some more tests and refinement our method could in future be applied on a bigger scale. New drugs could routinely be checked in the computer for additional hidden targets and potential use in different therapeutic areas. This will save a lot of money and would speed up drug development tremendously,” concludes Bork.

Anna-Lynn Wegener
Press Officer
EMBL
Meyerhofstrasse 1
D-69117 Heidelberg
tel. +49-6221-3878452
fax +49-6221-387525
wegener@embl.de

Anna-Lynn Wegener | EMBL
Further information:
http://www.embl.org/downloads/

Further reports about: developed effect therapeutic

More articles from Life Sciences:

nachricht Molecular libraries for organic light-emitting diodes
24.04.2017 | Goethe-Universität Frankfurt am Main

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Molecular libraries for organic light-emitting diodes

24.04.2017 | Life Sciences

Research sheds new light on forces that threaten sensitive coastlines

24.04.2017 | Earth Sciences

Making lightweight construction suitable for series production

24.04.2017 | Machine Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>