Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensing Tension: Molecular Motor Works By Detecting Minute Changes in Force

11.07.2008
Researchers at the University of Pennsylvania School of Medicine discovered that the activity of a specific family of nanometer-sized molecular motors called myosin-I is regulated by force.

The motor puts tension on cellular springs that allow vibrations to be detected within the body. This finely tuned regulation has important implications for understanding a wide variety of basic cellular processes, including hearing and balance and glucose uptake in response to insulin. The findings appear in the most recent issue of Science.

“This is the first demonstration that myosin-I shows such dramatic sensitivity to tension,” says senior author E. Michael Ostap, Ph.D., Associate Director, Pennsylvania Muscle Institute and Associate Professor of Physiology. “It is surprising that a molecular motor can sense such small changes in force.”

Myosin-I is a biological motor that uses the chemical energy made by cells to ferry proteins within cells and to generate force, powering the movement of molecular cargos in nearly all cells.

... more about:
»Molecular »Myosin »Protein

In two specific cases, myosin I puts tension on the specialized spring-like structures in human ears that enable hearing and maintenance of balance, and also has a role in delivering the proteins that pump glucose into cells in response to insulin. “However, why a tension-sensing molecular motor is needed for this function is unknown,” says Ostap.

In collaboration with Henry Shuman, PhD, Associate Professor of Physiology, the research team used optical tweezers -- a combination focused laser beam and microscope, of sorts -- to measure incredibly small forces and movements (on the piconewton and nanometer level) to discover that myosin I motors are regulated by force. The motors pull on their cellular cargos until a certain tension is attained, after which they stop moving, but will hold the tension. If something happens in the cell to decrease this tension, the motor will restart its activity and will restore the lost tension.

Myosins use the energy from ATP to generate force and motion. Humans have 40 myosin genes that sort into 12 myosin families. Members of the myosin family have been found in every type of cell researchers have examined. The Ostap lab is investigating the biochemical properties of several members of the myosin family to better understand movement in cells, which is important in development, wound healing, the immune response, and the spread of cancer, among other functions. These new findings shed light on the role of myosin I in cells, supporting the notion that this molecular motor is more important in generating and sustaining tension rather than transporting protein cargo.

The research team will now apply these results to better understand how cells use these tension sensors to carry out their physiological functions.

This research was supported by the National Institute of General Medical Sciences and the National Institute of Arthritis and Musculoskeletal and Skin Diseases.

PENN Medicine is a $3.5 billion enterprise dedicated to the related missions of medical education, biomedical research, and excellence in patient care. PENN Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System.

Penn's School of Medicine is currently ranked #4 in the nation in U.S.News & World Report's survey of top research-oriented medical schools; and, according to most recent data from the National Institutes of Health, received over $379 million in NIH research funds in the 2006 fiscal year. Supporting 1,400 fulltime faculty and 700 students, the School of Medicine is recognized worldwide for its superior education and training of the next generation of physician-scientists and leaders of academic medicine.

The University of Pennsylvania Health System includes three hospitals — its flagship hospital, the Hospital of the University of Pennsylvania, rated one of the nation’s “Honor Roll” hospitals by U.S.News & World Report; Pennsylvania Hospital, the nation's first hospital; and Penn Presbyterian Medical Center — a faculty practice plan; a primary-care provider network; two multispecialty satellite facilities; and home care and hospice.

Karen Kreeger | Newswise Science News
Further information:
http://www.uphs.upenn.edu

Further reports about: Molecular Myosin Protein

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>