Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seasonal Programmed Brain Cell Death Foiled in Living Birds

11.07.2008
Neurons in brains of one songbird species equipped with a built-in suicide program that kicks in at the end of the breeding season have been kept alive for seven days in live birds by researchers trying to understand the role that steroid hormones play in the growth and maintenance of the neural song system.

It is the first time scientists have shown that inhibiting an enzyme involved in programmed cell death can protect a brain region in a living animal from neurodegeneration following the withdrawal of steroids.

In addition, the University of Washington research being published in tomorrow’s edition of the Journal of Neuroscience reports that the infusion of this enzyme inhibitor into one brain region also kept another connected brain structure from degenerating.

The research has potential to help scientists develop clinical strategies for treating strokes and such human age-related degenerative diseases as Alzheimer’s, Parkinson’s and dementia, all of which may involve the death of brain cells.

... more about:
»Brenowitz »Cell »HVC »Inhibitor »breeding »caspase »hormone »neurons

Previous work by the co-authors Christopher Thompson and Eliot Brenowitz showed that neurons in a brain region called the HVC begin regressing within 12 hours after the withdrawal of the steroid hormone testosterone, followed soon thereafter by cell death. The new study indicates that enzymes called caspases, which play a key role in a cell suicide process called apoptosis, are involved in this process of neurodegeneration and that inactivation of caspases protects brain cells for at least a week.

Thompson, who just earned his doctorate in neurobiology and behavior at the UW and is now a postdoctoral researcher at the Freie Univeristät in Berlin, and Brenowitz, a UW professor of psychology and biology, study the brain regions controlling the singing behavior of a white-crowned sparrow.

“In the future, physicians might be able to stabilize people who have suffered a stroke using these inhibitors,” said Brenowitz. “The basic mechanisms of cell death are the same in people and birds. With a stroke we often act as if it only affects the one area stricken by the loss of blood supply. But neuroscience has shown that different brain regions are connected in neural circuits. By using inhibitors like these to preserve neurons in the affected area, we might be able to preserve neurons in other connected brain areas.”

The researchers received federal and state permits to capture 15 male sparrows in Eastern Washington after the breeding season as the birds were returning from Alaska to their winter home in California. The birds were housed indoors for 12 weeks under short-day lighting conditions to ensure their song and reproductive systems were regressed to a non-breeding state. Song-control regions in the brains of these sparrows and other songbirds naturally expand and shrink during the year depending on whether or not the birds are in a breeding state.

Next, the birds were exposed to 16 hours of light a day in long-day conditions, castrated and implanted with a high level of testosterone for 28 days to induce full growth of the song-control system. At that point, testosterone was withdrawn, the caspase inhibitors were infused near the HVC region on one side of the brain in 12 of the birds and the sparrows were returned to short-day lighting conditions. Three of the sparrows received a control substance that is chemically similar but did not have inhibitory properties. Groups of birds were euthanized after 1, 3 and 7 days. These procedures were done with the approval of the UW’s Institutional Animal Care and Use Committee and the National Institute of Mental Health. The latter funded the research.

Examination of brain tissue showed that the caspase inhibitors prevented cell death in the HVC on the side of birds’ brain that received these chemicals while this region began to degenerate on the opposite side of the brain. In addition, neurons in another connected song-control region called the RA on the side of the brain receiving the caspase inhibitors did not regress after seven days. Neurons in the HVC in the birds that did not get caspase inhibitors exhibited cell death, and RA neurons regressed.

“The normal role of hormones during the breeding season is to stimulate and maintain growth of these neural systems. We don’t yet know all the ways in which hormones prevent brain cell death, but this study shows that hormones block caspases and so preserve neurons,” said Brenowitz. “We are extending the life of these cells and halting the rapid degeneration of the song system.”

For more information, contact Brenowitz at (206) 543-8534 or eliotb@u.washington.edu or Thompson at ckthomps@u.washington.edu.

Joel Schwarz | Newswise Science News
Further information:
http://www.washington.edu

Further reports about: Brenowitz Cell HVC Inhibitor breeding caspase hormone neurons

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>