Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seasonal Programmed Brain Cell Death Foiled in Living Birds

11.07.2008
Neurons in brains of one songbird species equipped with a built-in suicide program that kicks in at the end of the breeding season have been kept alive for seven days in live birds by researchers trying to understand the role that steroid hormones play in the growth and maintenance of the neural song system.

It is the first time scientists have shown that inhibiting an enzyme involved in programmed cell death can protect a brain region in a living animal from neurodegeneration following the withdrawal of steroids.

In addition, the University of Washington research being published in tomorrow’s edition of the Journal of Neuroscience reports that the infusion of this enzyme inhibitor into one brain region also kept another connected brain structure from degenerating.

The research has potential to help scientists develop clinical strategies for treating strokes and such human age-related degenerative diseases as Alzheimer’s, Parkinson’s and dementia, all of which may involve the death of brain cells.

... more about:
»Brenowitz »Cell »HVC »Inhibitor »breeding »caspase »hormone »neurons

Previous work by the co-authors Christopher Thompson and Eliot Brenowitz showed that neurons in a brain region called the HVC begin regressing within 12 hours after the withdrawal of the steroid hormone testosterone, followed soon thereafter by cell death. The new study indicates that enzymes called caspases, which play a key role in a cell suicide process called apoptosis, are involved in this process of neurodegeneration and that inactivation of caspases protects brain cells for at least a week.

Thompson, who just earned his doctorate in neurobiology and behavior at the UW and is now a postdoctoral researcher at the Freie Univeristät in Berlin, and Brenowitz, a UW professor of psychology and biology, study the brain regions controlling the singing behavior of a white-crowned sparrow.

“In the future, physicians might be able to stabilize people who have suffered a stroke using these inhibitors,” said Brenowitz. “The basic mechanisms of cell death are the same in people and birds. With a stroke we often act as if it only affects the one area stricken by the loss of blood supply. But neuroscience has shown that different brain regions are connected in neural circuits. By using inhibitors like these to preserve neurons in the affected area, we might be able to preserve neurons in other connected brain areas.”

The researchers received federal and state permits to capture 15 male sparrows in Eastern Washington after the breeding season as the birds were returning from Alaska to their winter home in California. The birds were housed indoors for 12 weeks under short-day lighting conditions to ensure their song and reproductive systems were regressed to a non-breeding state. Song-control regions in the brains of these sparrows and other songbirds naturally expand and shrink during the year depending on whether or not the birds are in a breeding state.

Next, the birds were exposed to 16 hours of light a day in long-day conditions, castrated and implanted with a high level of testosterone for 28 days to induce full growth of the song-control system. At that point, testosterone was withdrawn, the caspase inhibitors were infused near the HVC region on one side of the brain in 12 of the birds and the sparrows were returned to short-day lighting conditions. Three of the sparrows received a control substance that is chemically similar but did not have inhibitory properties. Groups of birds were euthanized after 1, 3 and 7 days. These procedures were done with the approval of the UW’s Institutional Animal Care and Use Committee and the National Institute of Mental Health. The latter funded the research.

Examination of brain tissue showed that the caspase inhibitors prevented cell death in the HVC on the side of birds’ brain that received these chemicals while this region began to degenerate on the opposite side of the brain. In addition, neurons in another connected song-control region called the RA on the side of the brain receiving the caspase inhibitors did not regress after seven days. Neurons in the HVC in the birds that did not get caspase inhibitors exhibited cell death, and RA neurons regressed.

“The normal role of hormones during the breeding season is to stimulate and maintain growth of these neural systems. We don’t yet know all the ways in which hormones prevent brain cell death, but this study shows that hormones block caspases and so preserve neurons,” said Brenowitz. “We are extending the life of these cells and halting the rapid degeneration of the song system.”

For more information, contact Brenowitz at (206) 543-8534 or eliotb@u.washington.edu or Thompson at ckthomps@u.washington.edu.

Joel Schwarz | Newswise Science News
Further information:
http://www.washington.edu

Further reports about: Brenowitz Cell HVC Inhibitor breeding caspase hormone neurons

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>