Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seasonal Programmed Brain Cell Death Foiled in Living Birds

11.07.2008
Neurons in brains of one songbird species equipped with a built-in suicide program that kicks in at the end of the breeding season have been kept alive for seven days in live birds by researchers trying to understand the role that steroid hormones play in the growth and maintenance of the neural song system.

It is the first time scientists have shown that inhibiting an enzyme involved in programmed cell death can protect a brain region in a living animal from neurodegeneration following the withdrawal of steroids.

In addition, the University of Washington research being published in tomorrow’s edition of the Journal of Neuroscience reports that the infusion of this enzyme inhibitor into one brain region also kept another connected brain structure from degenerating.

The research has potential to help scientists develop clinical strategies for treating strokes and such human age-related degenerative diseases as Alzheimer’s, Parkinson’s and dementia, all of which may involve the death of brain cells.

... more about:
»Brenowitz »Cell »HVC »Inhibitor »breeding »caspase »hormone »neurons

Previous work by the co-authors Christopher Thompson and Eliot Brenowitz showed that neurons in a brain region called the HVC begin regressing within 12 hours after the withdrawal of the steroid hormone testosterone, followed soon thereafter by cell death. The new study indicates that enzymes called caspases, which play a key role in a cell suicide process called apoptosis, are involved in this process of neurodegeneration and that inactivation of caspases protects brain cells for at least a week.

Thompson, who just earned his doctorate in neurobiology and behavior at the UW and is now a postdoctoral researcher at the Freie Univeristät in Berlin, and Brenowitz, a UW professor of psychology and biology, study the brain regions controlling the singing behavior of a white-crowned sparrow.

“In the future, physicians might be able to stabilize people who have suffered a stroke using these inhibitors,” said Brenowitz. “The basic mechanisms of cell death are the same in people and birds. With a stroke we often act as if it only affects the one area stricken by the loss of blood supply. But neuroscience has shown that different brain regions are connected in neural circuits. By using inhibitors like these to preserve neurons in the affected area, we might be able to preserve neurons in other connected brain areas.”

The researchers received federal and state permits to capture 15 male sparrows in Eastern Washington after the breeding season as the birds were returning from Alaska to their winter home in California. The birds were housed indoors for 12 weeks under short-day lighting conditions to ensure their song and reproductive systems were regressed to a non-breeding state. Song-control regions in the brains of these sparrows and other songbirds naturally expand and shrink during the year depending on whether or not the birds are in a breeding state.

Next, the birds were exposed to 16 hours of light a day in long-day conditions, castrated and implanted with a high level of testosterone for 28 days to induce full growth of the song-control system. At that point, testosterone was withdrawn, the caspase inhibitors were infused near the HVC region on one side of the brain in 12 of the birds and the sparrows were returned to short-day lighting conditions. Three of the sparrows received a control substance that is chemically similar but did not have inhibitory properties. Groups of birds were euthanized after 1, 3 and 7 days. These procedures were done with the approval of the UW’s Institutional Animal Care and Use Committee and the National Institute of Mental Health. The latter funded the research.

Examination of brain tissue showed that the caspase inhibitors prevented cell death in the HVC on the side of birds’ brain that received these chemicals while this region began to degenerate on the opposite side of the brain. In addition, neurons in another connected song-control region called the RA on the side of the brain receiving the caspase inhibitors did not regress after seven days. Neurons in the HVC in the birds that did not get caspase inhibitors exhibited cell death, and RA neurons regressed.

“The normal role of hormones during the breeding season is to stimulate and maintain growth of these neural systems. We don’t yet know all the ways in which hormones prevent brain cell death, but this study shows that hormones block caspases and so preserve neurons,” said Brenowitz. “We are extending the life of these cells and halting the rapid degeneration of the song system.”

For more information, contact Brenowitz at (206) 543-8534 or eliotb@u.washington.edu or Thompson at ckthomps@u.washington.edu.

Joel Schwarz | Newswise Science News
Further information:
http://www.washington.edu

Further reports about: Brenowitz Cell HVC Inhibitor breeding caspase hormone neurons

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>