Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alzheimer's disease as a case of brake failure?

26.06.2008
A loss of protein function in neurons may lead to dementia

Rutgers researcher Karl Herrup and colleagues at Case Western Reserve University have discovered that a protein that suppresses cell division in brain cells effectively "puts the brakes" on the dementia that comes with Alzheimer's disease (AD). When the brakes fail, dementia results.

This discovery could open the door to new ways of treating Alzheimer's disease, which affects up to half the population over the age of 85.

Determining the protein’s previously unsuspected role in AD is an important piece of the puzzle and it brings a new perspective to the basis of AD. “It changes the logic from a search for a trigger that kicks off the dementia to the failure of a safety that has suppressed it,” said Herrup, chair of the Department of Cell Biology and Neuroscience at Rutgers, The State University of New Jersey.

... more about:
»Alzheimer' »Cdk5 »Herrup »dementia

The researchers reported their findings in the in the June 24 Proceedings of the National Academy of Sciences (PNAS). The paper was previously available online in the PNAS Early Edition.

Herrup has spent a good part of his career seeking to unravel the mystery behind unrestrained cell cycling. Looking at AD through the lens of cancer, Herrup sees the rampant cell division associated with cancer mirrored in AD-related dementia.

In cancer, the seemingly uncontrollable cell division enables the disease to overwhelm normal body cells. Adult neurons, or nerve cells, don't normally divide. (Cancerous brain tumors do not grow from neurons but from glial cells.) Instead of producing new neurons in the brain, the cycling leads to cell death, which causes progressive dementia.

"Every cell wants to divide, and that basic urge never leaves the cell," Herrup said.

"Homeostasis in the brain has worked out a way to successfully suppress cell cycling, but with age even that highly successful program sometimes fails, resulting in a catastrophic loss of neurons."

Herrup's team experimented with a protein family known as cyclin-dependent kinases (Cdk). These enzymes power the cell cycle, driving it forward through its various phases. The scientists focused on one particular kinase – Cdk5 – termed "an atypical kinase" because they could find no involvement in propelling the cell cycle. They found that while it appears to be inert as a cell cycle promoter, Cdk5 in the nervous system actually functions to hold the cell cycle in check.

"Its mere presence helps protect the brain," Herrup said. "What we discovered is that Cdk5 acts as a brake, not a driver."

Their latest laboratory research examined the workings of Cdk5 in human AD tissues and in a mouse model. Normally, the protein resides in the nerve cell nucleus, but in the presence of AD – both in the mouse model and in the human tissue – the disease process drives the protein out into the cell's cytoplasm. This disrupts the status quo, overrides the brake and unleashes a chain of events that ultimately leads to the death of the cells and the resulting dementia.

"The ejection of Cdk5 out of the nucleus is probably related to the changed chemistry of the Alzheimer's brain and chronic inflammation that accompanies AD," Herrup said.

Joseph Blumberg | EurekAlert!
Further information:
http://www.rutgers.edu

Further reports about: Alzheimer' Cdk5 Herrup dementia

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>