Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alzheimer's disease as a case of brake failure?

26.06.2008
A loss of protein function in neurons may lead to dementia

Rutgers researcher Karl Herrup and colleagues at Case Western Reserve University have discovered that a protein that suppresses cell division in brain cells effectively "puts the brakes" on the dementia that comes with Alzheimer's disease (AD). When the brakes fail, dementia results.

This discovery could open the door to new ways of treating Alzheimer's disease, which affects up to half the population over the age of 85.

Determining the protein’s previously unsuspected role in AD is an important piece of the puzzle and it brings a new perspective to the basis of AD. “It changes the logic from a search for a trigger that kicks off the dementia to the failure of a safety that has suppressed it,” said Herrup, chair of the Department of Cell Biology and Neuroscience at Rutgers, The State University of New Jersey.

... more about:
»Alzheimer' »Cdk5 »Herrup »dementia

The researchers reported their findings in the in the June 24 Proceedings of the National Academy of Sciences (PNAS). The paper was previously available online in the PNAS Early Edition.

Herrup has spent a good part of his career seeking to unravel the mystery behind unrestrained cell cycling. Looking at AD through the lens of cancer, Herrup sees the rampant cell division associated with cancer mirrored in AD-related dementia.

In cancer, the seemingly uncontrollable cell division enables the disease to overwhelm normal body cells. Adult neurons, or nerve cells, don't normally divide. (Cancerous brain tumors do not grow from neurons but from glial cells.) Instead of producing new neurons in the brain, the cycling leads to cell death, which causes progressive dementia.

"Every cell wants to divide, and that basic urge never leaves the cell," Herrup said.

"Homeostasis in the brain has worked out a way to successfully suppress cell cycling, but with age even that highly successful program sometimes fails, resulting in a catastrophic loss of neurons."

Herrup's team experimented with a protein family known as cyclin-dependent kinases (Cdk). These enzymes power the cell cycle, driving it forward through its various phases. The scientists focused on one particular kinase – Cdk5 – termed "an atypical kinase" because they could find no involvement in propelling the cell cycle. They found that while it appears to be inert as a cell cycle promoter, Cdk5 in the nervous system actually functions to hold the cell cycle in check.

"Its mere presence helps protect the brain," Herrup said. "What we discovered is that Cdk5 acts as a brake, not a driver."

Their latest laboratory research examined the workings of Cdk5 in human AD tissues and in a mouse model. Normally, the protein resides in the nerve cell nucleus, but in the presence of AD – both in the mouse model and in the human tissue – the disease process drives the protein out into the cell's cytoplasm. This disrupts the status quo, overrides the brake and unleashes a chain of events that ultimately leads to the death of the cells and the resulting dementia.

"The ejection of Cdk5 out of the nucleus is probably related to the changed chemistry of the Alzheimer's brain and chronic inflammation that accompanies AD," Herrup said.

Joseph Blumberg | EurekAlert!
Further information:
http://www.rutgers.edu

Further reports about: Alzheimer' Cdk5 Herrup dementia

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>