Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alzheimer's disease as a case of brake failure?

26.06.2008
A loss of protein function in neurons may lead to dementia

Rutgers researcher Karl Herrup and colleagues at Case Western Reserve University have discovered that a protein that suppresses cell division in brain cells effectively "puts the brakes" on the dementia that comes with Alzheimer's disease (AD). When the brakes fail, dementia results.

This discovery could open the door to new ways of treating Alzheimer's disease, which affects up to half the population over the age of 85.

Determining the protein’s previously unsuspected role in AD is an important piece of the puzzle and it brings a new perspective to the basis of AD. “It changes the logic from a search for a trigger that kicks off the dementia to the failure of a safety that has suppressed it,” said Herrup, chair of the Department of Cell Biology and Neuroscience at Rutgers, The State University of New Jersey.

... more about:
»Alzheimer' »Cdk5 »Herrup »dementia

The researchers reported their findings in the in the June 24 Proceedings of the National Academy of Sciences (PNAS). The paper was previously available online in the PNAS Early Edition.

Herrup has spent a good part of his career seeking to unravel the mystery behind unrestrained cell cycling. Looking at AD through the lens of cancer, Herrup sees the rampant cell division associated with cancer mirrored in AD-related dementia.

In cancer, the seemingly uncontrollable cell division enables the disease to overwhelm normal body cells. Adult neurons, or nerve cells, don't normally divide. (Cancerous brain tumors do not grow from neurons but from glial cells.) Instead of producing new neurons in the brain, the cycling leads to cell death, which causes progressive dementia.

"Every cell wants to divide, and that basic urge never leaves the cell," Herrup said.

"Homeostasis in the brain has worked out a way to successfully suppress cell cycling, but with age even that highly successful program sometimes fails, resulting in a catastrophic loss of neurons."

Herrup's team experimented with a protein family known as cyclin-dependent kinases (Cdk). These enzymes power the cell cycle, driving it forward through its various phases. The scientists focused on one particular kinase – Cdk5 – termed "an atypical kinase" because they could find no involvement in propelling the cell cycle. They found that while it appears to be inert as a cell cycle promoter, Cdk5 in the nervous system actually functions to hold the cell cycle in check.

"Its mere presence helps protect the brain," Herrup said. "What we discovered is that Cdk5 acts as a brake, not a driver."

Their latest laboratory research examined the workings of Cdk5 in human AD tissues and in a mouse model. Normally, the protein resides in the nerve cell nucleus, but in the presence of AD – both in the mouse model and in the human tissue – the disease process drives the protein out into the cell's cytoplasm. This disrupts the status quo, overrides the brake and unleashes a chain of events that ultimately leads to the death of the cells and the resulting dementia.

"The ejection of Cdk5 out of the nucleus is probably related to the changed chemistry of the Alzheimer's brain and chronic inflammation that accompanies AD," Herrup said.

Joseph Blumberg | EurekAlert!
Further information:
http://www.rutgers.edu

Further reports about: Alzheimer' Cdk5 Herrup dementia

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>